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PART I. THE SEPARATED PAIR APPROXIMATION 
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INTRODUCTION 

In recent years, the successful progress of ab initio calculations 

for atoms and small molecules has been encouraging. Particularly 

impressive have been the determinations of practically exact Hartree-Fock 

wavefunctions for atoms and diatomic molecules. This convincing work has 

proved that the self-consistent field approximation can be of chemical 

use only in conjunction with a set of reliable rules for the accurate 

estimation of correlation errors, if such rules can be established. The 

feasibility of ab initio calculations beyond the Hartree-Fock approximation 

has therefore become of considerable interest, a fact which is attested 

to by Sinanoglu's remarkable work. 

The theory of separated electron pairs goes back to Hurley's thesis 

(1952) and the paper by Hurley, Lennard-Jones and Pople (1953). Although 

the idea of using antisymmetrized products of pair functions had been 

alluded to previously by Pauling (1949), by Fock (1950) and perhaps even 

earlier by others, it was the paper by Hurley et aj.. which introduced 

the crucial element in the theory; the concept of strong orthogonality. 

Specifically, these authors formulated the following three ideas; 

(i) Any two geminals A^, satisfy the strong orthogonality condition 

(ii) These are equivalent to the orbital orthogonalities 

for all i,k 

if A and A are given by the expressions 
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A^(l,3) = 2 *ik^"vi(^)"vk(3)' 
1 ,K 

(ill) Without loss of generality any pair function can be written 

in the "diagonal form" 

with 

y^^l^Mi ~ V, for all i,j. 

The important simplification achieved by these assumptions is that only 

interactions within one geminal and between any two geminals enter the 

energy expectation value. 

Various authors have subsequently re-examined the separated pair 

approximation. Parks and Parr (1958) suggested that it may be helpful 

to minimize the energies of the individual geminals turn by turn, since 

they are easily isolated in the total energy expression. The same 

authors also considered the adaptation to semiempirical usage. Sets of 

coupled integrodifferential equations were derived for the two-electron 

functions by Kapuy (1958, 1960a) and for the natural orbitals by Kutzelnigg 

(1964) who also considered a method for determining the natural orbitals 

as well as the occupation coefficients. Incorrect equations for the 

geminals were given by Parks and Parr. Recently McWeeny (1959, 1960) 

and McWeeny and Mizuno (1961) developed a theory of generalized group 

functions of which the separated pair approximation is a special case. 
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The attempt by Kapuy (1959, 1960b, 1961b) to develop a theory of electron 

pairs with "almost orthogonal" two-electron functions has yielded equa­

tions which appear impractical for actual work. The work by Szasz (1959, 

1960, 1962a, 1962b, 1963b) with non-orthogonal two-electron functions 

containing interelectronic distances has led to many types of complex 

matrix elements containing interelectronic distances and connecting the 

coordinates of more than two electrons. 

Although the separated pair approximation was proposed more than a 

decade ago, only very few rigorous implementations have been attempted 

so far, namely the work by Ebbing and Henderson (1965) on the lithium 

hydride molecule, the work by McWeeny and Ohno (1960) on the water 

molecule and that by McWeeny and Sutcliffe (1963) on the beryllium atom. 

In all three cases, very limited basis sets were used and various addi­

tional simplifying assumptions very severely restricted the variational 

possibilities. For this reason, the full potential of the separated pair 

approximation in the context of the ab initio calculations has thus far 

remained unexplored. 

In the present investigation, a method is developed which permits 

the general determination of the separated pair approximation by a 

variational procedure and which leads directly to its natural orbitals. 

The method is then applied to the ground states of the iso-electronic 

series of the atomic systems containing four electrons. Uniformly, about 

90 per cent of the correlation energy is recovered; but it is suspected 

that with somewhat more favorable computational equipment this may perhaps 

be increased to 92 per cent. The understanding of the source of the 

correlation energy is a further objective of the investigation. It is 
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achieved by an analysis based on a partitioning of the energy into con­

tributions from various geminals and various natural orbitals. Prom this 

analysis a variety of Inferences for future applications are drawn. 

In spite of the very considerable Improvement over the Hartree-Fock 

approximation, the separated pair approximation is probably not quite good 

enough to yield absolute energies of chemical accuracy, if the latter is 

defined to be about 1 kcal or about 10 ̂  a.u. However, it is here 

proposed that the separated pair approximation can be taken as an excel­

lent zeroth-order approximation which may be ideally suited for including 

all further improvements as very small additive corrective terms. This 

question will be taken up in Part II, 
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GLOSSARY 

Although all abbreviations are defined in the text, the following 

list may be helpful. 

AP antisymmetrized product 

APG antisymmetrized product of geminals 

APSG J antisymmetrized product of separated geminals 

SPA separated pair approximation 

^gp wavefunction corresponding to the exact SPA 

APSG 4^ the i-th approximation to 

APG the i-th approximation to APG 

STAO Slater-type atomic orbital 

NO natural orbital 

PNO principal natural orbital 

HP Hartree-Fock 
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WAVEFUNCTION AND ENERGY IN THE SEPARATED PAIR APPROXIMATION 

Separated Pair Approximation, Separated Geminals, Natural Orbitals 

Within the pair approximation the wavefunction of a 2n-electron 

system is defined as the antisymmetrized product of geminals (APG) 

§(l,2,...2n) =9^{Aj(1,2)0^(1,2)...A^(2v-l,2v)e^(2v-l,2v)... 

A^(2n-l),2n)9^(2n-l,2n)>, (1.1) 

where the geminals A^, y =1,2,..,v..n and the associated spin functions 

0 are dictated by the physical situation and A is the partial anti-

symmetrizer 

1 

*= [2"/(2n):]2 (1.2) 
P 

where the operator P permutes electron coordinates between different two-

electron space-spin products only. Each two-electron space-spin product 

is antisymmetric with respect to interchange of coordinates. Without 

loss of generality it can be assumed 

(i) that the geminals are weakly orthogonal and normalized to unity 

(1.2) (1.3) 

(il) that each geminal is expressed as a natural expansion 

= I  (1-4) 

with 

/"•«"-I = "ij. (1-5) 
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(iii) that the é , are real if A is symmetric in its two electron 
ryi r 

coordinates. 

Separated geminaIs are characterized by the strong orthogonality 

condition 

J  =  0  ( n ^ v ) .  (1 .6)  

With this additional constraint, the wavefunction $ of Equation 1.1 is 

referred to as separated pair approximation or as an antisymmetrlzed 

product of separated geminaIs, hereafter abbreviated as APSG. By virtue 

of Equations 1.3 and 1.6, ̂  is then normalized to unity. 

' Arai (1960), Lbwdin (1961) and more recently Kutzelnigg (1964) have 

shown that if two geminals are strongly orthogonal, all natural orbitals 

of one are orthogonal to all natural orbitals of the other. In other 

words, if are the natural orbitals of gemina 1 A^(y = K,L,M,...) 

then the set * * *'$^L1'^L2 ' * * *' * * * ̂  forms an orthonormal 

basis which can be generated from an arbitrary complete orthonormal basis 

(Xi>X2»X3>•••) by a certain isometric transformation T, i.e. , 

It furthermore follows that in the separated pair approximation, the set 

of all natural orbitals of all geminals is identical with the set of all 

natural orbitals of the wavefunction $. 

Energy Expression 

If the non-relativistic Hamiltonian of the electrons i=l,2,...2n in 

the field of the nuclei a=l,2,...A is written as 



www.manaraa.com

9 

H = Z h(l) + Z r "1, (1,8) 
i i<j J 

h(i) = -2^ • 2 , (1.8') 
a 

then the non-relativistic energy calculated with the Separated Pair 

Approximation 1.1 is given by 

E = ($IH|$) 

= Z{2 Z C 2(wi|ui) + z C C [Mi,iujliuj,wi]> 
M i Ml i J W 

+ Z { Z C /c ^(4[Mi,Mi|vj,vj]-2[jui,vj|vj,Mi])} (1.9) 
M<V i,j VJ 

where the following definitions have been introduced; 

(a|3) = f  dVj^^Vp (1.10) 

[ a , p l r , 5 ]  =  f  (1.11) 

For future reference the energy expression is written also as 

E = ZE(m) + Z I(|Lt,v) (1.12) 
M U<V 

where the E()Lt)'s represent intrageminal energies and the I(^,v)'s 

represent intergeminal interaction energies. Every intrageminal energy 

E(ju) is a sum over the natural orbital contributions; 

E(/i) = z C^iC^j<5(Mi,Mj) (1.13) 
1 ) j 

where 

<£(#ii,Mj) = 2()Lii|jni)Bj,j + [/ii,jij [/ij ,Mi]. (1.14) 
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Every intergeminal energy I(m,v) IS A sum of contributions from inter-

geminal orbital-pairs: 

Km.V) = (1.15) 

where 

cfCui,vj) = 4[ul,ui|vj,vj] - 2[)ii,vj |vj ,Mi]. (1.16) 

The total energy of £ gemina1 within the system is given by 

e^=E(u)+I(M) (1.17) 

where 

Km) = Z Ku.v) (1.18) 
v(^l) 

= ZC^i^(ul), 

with 

= z ZC Aj?(ui,vj), (1.19) 
v(/%) j vj 

represents the interaction between the /ith geminal and all other geminals. 

Using the geminal energies g , the total energy of the system can also be 
/i 

be expressed in the two forms: 

E = Z e - Z Km.v) , (1.20) 
ju ^ ju<v 

E =|ztE(M)+e„>. (1.21) 
H * 

Variational Equations 

Independent variations of the energy expression with respect to the 
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natural orbitale and occupation coefficients lead to two interdependent 

sets of equations. 

Variation of the natural orbital occupation coefficients results in 

the following set of coupled eigenvalue equations for each separated 

geminal (McWeeny and Sutcliffe, 1963 and Kutzelnigg, 1964): 

where / 

=£(iui,Mj) +,4Cui)6,j (1.23) 

represents an effective electron pair Hamiltonian matrix for the nth 

geminal. The eigenvalue is readily shown to be identical with the 

total geminal energy defined in Equation 1.17. The coupling matrix ̂(iui) 

defined by Equation 1.19 couples the eigenvalue equation for the /nth 

geminal with the eigenvalue equations of all other geminals. 

Variation of the natural orbitaIs yields the set of integrodif-

ferential equations 

~ ̂  j (1=1,2,...) (1.24) 

for each separated geminal (Kutzelnigg, 1964) where 

K^j^(l)j<(l) = J C1.27) 

and, ^j is a Lagrange multiplier incorporating the constraints 



www.manaraa.com

12 

• (I-:*) 

A different formulation of these variational equations has been 

developed by Huzlnaga (1964). 

The Integrodlfferentlal Equations 1.24 can be used to derive a cusp 

condition for the natural orbltals in the special case that the first 

order density matrix is invariant under rotations as, e.g., for certain 

atomic states. In this case, the natural orbltals are symmetry orbltals 

and can be classified according to quantum numbers £ and m. It is found 

that their radial parts R^^(r) satisfy the cusp conditions 

= -Z/(4+l) (1.29) 

if 

R^^(r) = r^R^i(r), (1.30) 

jt being the angular momentum quantum number. 

^ Determination of Geminals 

The determination of the geminals implies finding the natural 

orbltals and the natural orbital occupation coefficients. They are 

determined as simultaneous solutions of Equations 1.22 and 1.24 which are 

mutually dependent. If each equation were solvable separately, then one 

would hope to converge to the correct solution by shuttling back and 

forth between the two. 

In practice the set of coupled eigenvalue equations for the coef­

ficients, as given by Equation 1.22, can be solved by an Iterative 

sequence of eigenvalue calculations for the different geminals, and this 
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procedure is adopted here. The equation for the natural orbitals, 

Equation 1.24, on the other hand, appears somewhat unwieldy for practical 

work, especially in view of the off-diagonal Lagrangian multipliers. An 

alternative method, based on a direct energy minimization, was therefore 

developed and used here. 

In the present approach, the natural orbitals are constructed by an 

orthogonal transformation T from an arbitrarily, but judiciously, chosen 

set of orthonormal basis orbitals in accord with Equation 1.7. 

Furthermore, these basis functions are allowed to contain certain 

adjustable, in general non-linear, orbital parameters (The specific 

basis orbitals used in the present work are orthogonalized Slater-type 

atomic orbitals, the being the orbital exponents; but this is not essen­

tial for the described method. Under these premises the determination of 

the natural orbitals is equivalent to 

(i) making the appropriate choice of the basis 

(ii) finding the appropriate orbital parameters ^, 

(iii) finding the appropriate matrix T; 

and it is clear that the solution of Equation 1.24 can be replaced by a 

minimization of the total energy for fixed occupation coefficients with 

respect to variations of the orbitals of the orbital parameters ̂  

and of the matrix elements T^j. 

In the interest of saving computer time, a slightly more involved 

iterative scheme was adopted. It consists of two main parts which are 

executed in alternation. In Part I the parameters are fixed; T and 

the are changed. In Part II the matrix T is fixed, and the and 
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C are changed. 
Ui 

The basic cycle of Part I consists of two steps. The first step 

is an improvement of T by multiplication with another orthogonal matrix, 

f tl 

T^'^^R(0) where R(0) is a two by two rotation 

If the current value of T is T^^^ the improved value will be 

R(0) = 
^ii 

\ 
cos 0 -sin 0 

sin 0 cos 0 
(1.31) 

corresponding to a certain index pair (i,j). The angle 0 is determined 

by minimizing the total energy, while the orbital parameters as well as 

the occupation coefficients are kept constant. The details of the 

minimization are outlined below. The change in T leads to new natural 

orbitale and, with these new orbitals kept fixed, the second step 

consists of solving the Eigenvalue Equations 1.22 to find a new set of 

occupation coefficients This basic cycle is executed sequentially 

for all index pairs (i,j) and repeated until no further energy lowering 

is found. 

Part II of the technique is a minimization of the energy function 

E(T, with respect to the non-linear parameters 4^ while T is kept 

fixed. This energy function is defined as follows: Determine the 

coefficients from the Eigenvalue Equation 1.22 for fixed T and 

and substitute them in the total energy expression, which become* a 

function of T and alone. The minimization of E(T, ) can be executed 

by any one of the iterative techniques for minimization with respect 

to non-linear parameters (Ransil, 1960, Spang, 1962 and Wasserman, 1963). 

In practice the pattern search method (Hooke and Jeeves, 1961) was used. 
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The details of the two by two rotation mentioned above are as 

follows: Let be the natural orbital obtained from the orthogonal 

matrix T^"^, i.e., 

(• • >• • • ) = (x 1 »X2»• • • ^ (1.32) 

and let V- be the natural orbitals obtained from the matrix 
'ai 

^(n+1) = T(")R(e), (1.33) 

i.e., 

(•..'^£».««) — (Xj^ »X2 ' • • • ^ ^R(®) (1.34) 

where R(0) is the two by two matrix given in Equation 1.31. Let E^"^ 

be the total energy calculated with orbitals é ^ and let be that 
'^Mi 

obtained from the orbitals A straightforward calculation of the 

energy difference yields the expression 

4E = = £ q. sin^ecos^'^e (1.35) 
k=l * 

where the constants q^ are defined as follows: 

^4 = + bj^{[Mi,Mi|Mi,/ni]-2[iui,vj |vj ,iui] + [vj ,vj |vj ,vj] > 

(1.36) 

% = Bj^V " 4b2{[ui,wi|vj,ui] - [v j ,vj |iui,vj]} , (1.36') 

92 = 2bi{[wl,wl|vj,vj] + [/Lii.vj lui.vj]} , (1.36" 

9l = (1-3*'' 

where 
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"o = 

2 2 
^2 = -"v3 

\v = -bo{[vj,ui|^l,vj] - [Mi,/ii|vj ,vj]}+ ZbgtCvjjvjï-CwlIwi)} 

+ 2C^^{X^(vj,Vj) - X^(Mi,Mi)}- 2C^j£X^(vj,vj) - X^(fii,Mi)} 

+ C^iV^(vj,Vj) - Y^(Mi,Mi)} - C^jV/vj,vj) - Y^(Mi,Mi)>, 

V = Abgfullvj) 

with 

+ 4lC^iX^(Mi,vj) - C^jX^(Mi,vj)} 

+ 2{C^l\w,vj) - C^j\(Mi,vj)>, 

X^(>^i,Xj) = ZC^^[A:i,|um[Mm,Xj] > 

= 2 ^ {4[ym,yin|&i,Xj]-2[*i,ym|ym,Xj]}. 
r(/M) m 

All integrals are understood to be between the orbitals existing 

before multiplying by R(0). These relations are formulated for an 

intergeminal rotation. The relation for intrageminal rotations are simply 

obtained by the substitutions of d . for é . and C , for C . which result 
^vJ MJ VJ 

in certain simplifications. The energy minimum occurs when 6 satisfies 
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H = 0 = -8^2 + 8^^^4q^-2q2) + 3s^c^(q2-qj^) + Zsc^qg + c^q^ (1.37) 

where s = sin Q and c = cos 0. In all cases examined so far, only one 

minimum seemed to exist. Its position relative to the origin (0 = 0) is 

determined by the sign of q^. The method of two by two rotation has been 

applied to helium by Reid and Ohrn (1963). Equations 1.36 to 1.36'" 

simplify to their formulas for the helium atom. , 

The actual calculations to be reported in the next section show 

that minimization with respect to all three types of parameters is 

essential for making most effective use of a given basis set. Much 

poorer results would be obtained if, as Parks and Parr (1958) have 

suggested, one would in advance rigidly divide the linear space spanned 

by all orbitals into several, fixed, mutually orthogonal subspaces, one 

for each shell. To be sure, such a subdivision has the simplifying 

feature that the only type of iteration to be performed is the "shuttl­

ing back and forth" between the different shells which, within the 

present procedure, occurs when the simultaneous eigenvalue equations of 

Equation 1.22 are solved to determine the NO coefficients But this 

part of the calculation was found to be an almost trivial phase of the 

total iteration scheme. 
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SEPARATED PAIR APPROXIMATION FOR BERYLLIUM-LIKE SYSTEMS 

General Form of Geminals 

Expansion in Slater-type atomic orbitals 

The antisynraietrized product of separated geminals (APSG) for the 

ground state of the beryllium-like atoms is written as 

^ =«4(^^(1,2)9^(1,2)A^(3,4)9^(3,4)}, (1.38) 

where and are geminals of S symmetry describing the K and L shells 

respectively and 

Gg(i,j) = 8^(1,j) = {a(i)p(j) - 3(i)a(j)>//2 (1.39) 

are singlet spin functions. Because of the S symmetry of the geminals, the 

natural orbitals (NO's) can be shown to belong to irreducible representa­

tions of the rotation group and it seems convenient to write the geminal 

expansion (Equation 1.4) in the form 

with 

where 

V-e " I <2). (r= K.L) (1.41) 

are the natural orbitals of the geminal A , R being the radial part 

and Ybeing the spherical harmonic. The natural orbitals are constructed 

as linear combinations of Slater-type atomic orbitals (STAO's) 
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n'^ _1 

(n'j^my) = (2t) ^[(2n'):] (1.43) 

where ̂  is a function of n', i and y. The STAO's (n'Zmy) are the main 

contributors to the geminal A^; however, the latter also contains small 

admixtures of other STAO's (n'^my') because of orthogonality reasons. 

In the sequel the notation 

(yn/) = the set of the (2/+ 1) NO's (m =-je,-i+l,...+;2) 

and 

(n'iy) = the set of the (2£ + 1) STAO's (n'j2my), (m= .+i2) 

will also be used. 

In practice the first step in the construction of the NO's is the 

Schmidt orthogonalization of all STAO's used in a given calculation. 

The resulting orthogonalized STAO's ^hen are taken to be 

the basis referred to in Equation 1.7. In the zeroth approximation, the 

matrix T is set equal to the unit matrix; the final value of T determines 

the actual form of the natural orbitals. 

Transformation matrix T 

For a given set of orthogonalized STAO's , the number of natural 

orbitals which can be generated may be equal to or less than the number 

of It is found that most effective use of the basis set is made 

if the number of NO's equals the number of orthogonalized STAO's, i.e., 

if T is taken to be square. The importance of including as many NO's 

as STAO's is illustrated in Figure 1. Two APSG's are considered: 

containing three K NO's and two L NO's and containing six K NO's 
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and two L NO's. The NO*s are expressed In terms of two basis sets, bg 

containing five basis functions and b^ containing eight basis functions. 

The energy value calculated from using b^ lies between that 

calculated from using b^ and that from using b^. The energy was 

minimized with respect to all parameters in these three cases. Thus, 

although the NO's are improved by taking a larger basis, the introduction 

of new NO'S contributes a substantial energy lowering. That each NO 

gives a unique energy contribution will be discussed later with the 

analysis of the separated pair approximation. Henceforth T is taken to 

be square. 

In the subsequent section it will be seen that in all cases T does 

„ not differ greatly from the unit matrix the Schmidt orthogonalization 

is based on the following ordering of the original STAO's; 

(lsK,2sL,2sK,3sK,3sL,4sK),(2pL,2pK,3pK,3pL,4pK),(3dK,3dL,4dK),(4fK). 

(1.44) 

Hence, the principal contribution to each of the NO's turns out to be 

one of the Schmidt orthogonalized STAO's ^ the following it 

therefore will be understood that (^-n/m) denotes that NO which has as its 

principal component the orbital = (nfmyx), which denotes the Schmidt 

orthogonalized STAO (nMy). 

Nevertheless, it should be noted that the optimization of T is 

important, as can be seen from Figure 2. Comparison of the energies 

calculated using the Schmidt orthogonalized STAO's with the energies 

obtained with use of the best T for several separated pair approximations 

shows that the energy is improved by at least -0.015 a.u. Henceforth, 
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the results reported are for optimized T. 

Separated pair approximations to different degrees of accuracy 

A systematic study of the effect of including various NO's and the 

corresponding STAO's from the List 1.44 in the beryllium separated pair 

approximation (Figure 3) shows that the energy lowering which results 

from the addition of a particular NO (and the corresponding SIAO) is 

approximately constant, regardless of which other orbitals are present. 

In view of these results, various separated pair approximations can be 

constructed by including those and only those natural orbitals (and 

associated STAO's) which yield a certain degree of accuracy. Four such 

approximations for the beryllium atom are defined as the APSG's , 

and in Figure 4. These four approximations were chosen in the 

systematic study of beryllium-like atoms. 

Optimal Geminals 

Natural orbitals 

For the APSG's ^3 the energy was minimized with respect 

to all three kinds of variations as discussed earlier. In the case of 

the APSG the occupation coefficients and the transformation matrix T 

were varied for fixed STAG exponents. The latter were taken from 

and estimated from assumed linear trends in the nuclear charge Z and 

in the quantum numbers n and Z, The STAG exponents determined in this 

way for and are listed in Figure 5. Polynomial approxi­

mations to the STAO exponents for "^3 are given in Figure 6. 
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The scale factors 

T| = Potential Energy)/(Kinetic Energy) (1.45) 

which indicate the deviations from the virial theorem are given in 

Figure 7. It may be noted that although the STA.0 exponents used in 

APSG ̂  were not varied, the deviations are no greater than those for 

the other APSG's. If all orbital exponents of a wavefunction are 

corrected by multiplication with the corresponding T], a better APSG tdhich 

exactly satisfies the virial theorem is obtained. (Within the accuracy 

of the present calculations, the occupation coefficients and the T 

2 
matrices remain unaffected by this scaling process because (T]-1) is 

less than the number of significant figures carried.) The strong linear 

dependence of the orbital exponents on Z permits the estimation of 

initial values for each new atomic calculation. 

For the APSG's ̂ and ̂ the optimum transformations T 

(associated with the orbital exponents in Figure 5) are listed in 

Figures 8, 9 and 10, respectively. Corresponding elements T^^ from 

different atoms exhibit marked quantitative similarities, i.e., a weak 

dependence on the nuclear charge. 

The cusp condition imposes one constraint for each natural orbital, 

whereby it removes one degree of freedom for each NO in the variational 

problem. However, because minimization of the total energy was of prime 

interest in this calculation, no attempt was made to satisfy this condi­

tion. Consequently, the cusp values obtained for the beryllium atom 

range from -3.7 for the (Kls) and (L2s) NO's to values quite different 

from -4 for NO's which occur with very small occupation coefficients. 
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Occupation coefficients 

The occupation coefficients for beryllium-like atoms listed in 

Figure 11 show that the separated pair approximation consists mainly of 

(Kls), (L2s) and (L2p) no's. The large contribution of the occupation 

coefficients of the (IZs) and (L2p) no's can be accounted for by the 

degeneracy of the 2s and 2p atomic orbltals in the wavefunction of the 

zeroth-order perturbation theory. From the discussion of four-electron 

atoms by Linderberg and Shull (1960) it follows that for infinite nuclear 

charge the only non-zero occupation coefficients are = 1.0, 

C^2g = +0.97432062 and = -0.22516511 and that the natural orbltals 

are the Is, 2s and 2p hydrogenic atomic orbltals. It may also be noted 

that the occupation coefficients remain approximately constant as the 

separated pair approximation is improved and that those of the (Kls) and 

(L2s) no'S Increase with an increase in the nuclear charge. 

Within a separated gemlnal, the occupation numbers (i^., the 

squares of the occupation coefficients) given in Figure 12 are not 

proportional to the energy lowering contributions reported in Figure 3. 

However, It is seen that the occupation numbers of the "new" NO's in the 

more accurate approximation (1= 2,3,4) are consistently smaller by 

about an order of magnitude than the NO's which are already present in 

the less accurate approximation The choice of and 

as approximations to various degrees of accuracy is therefore essential­

ly supported by the order of Importance of the NO's deduced from the 

occupation numbers.- The (K4s) NO seems to be an exception. It is of 

course not possible to compare the energy lowering contributions from 

different geminals by merely considering the occupation numbers because 
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the values of the energy integrals are very different for the two shells. 

Principal natural orbitals and Hartree-Fock approximation 

Nazaroff and Hirschfelder (1963) have shown for two-electron systems 

that the antisyinmetrized product (AP) formed with the first NO approxi­

mates the Hartree-Fock (HF) wavefunction to second-order perturbation 

theory and that the energy calculated from the AP of the first NO approxi­

mates the Hartree-Fock energy to fourth-order perturbation theory. It 

is generally surmised that a similar relationship exists for more general 

systems. 

A comparison of the AP's formed from (Kls) and (L2s), the principal 

natural orbitals (PNO's) of the various separated pair approximations, 

with the Hartree-Fock wavefunction is embodied in Figure 13. By and 

large, the relative difference between E(PNO), the energy calculated 

from the PNO-AP's, and the Hartree-Fock energy E(HF) decreases lAen the 

PNO's are taken from the more accurate separated pair approximations 

and when the atom is uncharged. The absolute deviation from the Hartree-

Fock energy increases slowly from beryllium to neon +6 and is also quite 

large for lithium -1. For the deviation from the Hartree-Fock energy 

is approximately 0.001 a.u. for all atoms except lithium -1 for which it 

is 0.004 a.u. 

The overlap integral between the AP formed from the PNO's and the 

Hartree-Fock AP approaches unity when the PNO's are taken from more 

accurate separated pair approximations and as the nuclear charge increases. 

Consequently the PNO's span very nearly the same space as the HF orbitals 

and the question arises which of the possible SCF orbitals are closest 

to the principal natural orbitals of the separated pair approximation. 
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Although it is generally believed that the localized SCF orbitals would 

be close to the natural orbitals (Edmiston and Ruedenberg, 1963), it turns 

out that, in the beryllium-like systems, the canonica1 SCF orbitals are 

much closer to the PNO's. In all cases, the near-orthogonal transforma­

tion leading from the canonical SCF orbitals to the PNO's corresponds to 

a rotation angle of less than two degrees. In contrast, it was found by 

Edmiston (1963a) that the localized SCF orbitals for beryllium are related 

to the canonical SCF orbitals by an orthogonal transformation corresponding 

to a rotation of about six degrees and that an angle of five to seven 

degrees is found in all K-shells of second row atoms. 

Energy 

Correlation energy recovered 

Figure 14 contains information on the energies calculated, within 

the separated pair approximations represented by the APSG's , iy and 

Given are (i) the deviations from the experimental energies 

AE(APSG #^) = E(APSG ̂ ) - E(exact) (1.46) 

and (ii) the percentage of correlation energy recovered 

100lE(APSG §^) - E(HF)}/{E(exact) - E(HF)>. (1.47) 

- Figure 14 also contains an extrapolation for the best energy value possible 

in the separated pair approximation, denoted by AE(SP), which is estimated 

by a procedure to be discussed in the next section. 

The exact non-relativistic energy was obtained with the formula 
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E(exact) = E'*"'' + + I2 + E(rel.) 

where E^^ is the non-relativistic energy for the helium-like ions, as 

calculated by Pekeris (1958); and are the first and second ioniza­

tion potentials (Moore, 1949) corrected to infinite nuclear mass, and 

E(rel.) is the correction for the 2s relativistic effects obtained by 

taking the difference between the relativistic energy of the four- and 

the two-electron atoms given by Hartmann and Clementi (Table IV, 1964), 

•However for the beryllium atom, their reported value -0.000165 a.u. was 

used. 

In order to estimate the exact energies for lithium -1 and neon +6, 

use was made of the fact that the exact power expansion in Z ^ starts 

with the terms 

E(Z) = -1.25Z^ + 1.5592742Z + a^ + a^z"^ + agZ"^ + g^z"^ +... 

(Linderberg and Shull, 1960), A least squares fit of a cubic equation in 

Z ^ to the difference €E(Z) + 1.25Z^ - 1,5592742ZJ for the atoms beryllium 

to fluorine +5 yields 

a^ = -0.868132 a. = 0,557555 

a^ = -0.179684 a = -1.677943. 

The maximum deviation of this approximation from the fitted values is 

0,00025 a.u., and this is presumably also the error in the reported values 

for lithium -1 and neon +6 which are obtained from this formula. The 

Hartree-Fock energies are those reported by Roothaan, Sachs and Weiss 

(I960). 
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The essential result, illustrated in Figure 14, is that the separated 

pair approximation consistently recovers about 90 per cent of the correla­

tion energy in all systems (89+0.8 per cent for 89 to 91 per cent for 

the extrapolated separated pair approximation $gp). As a consequence the 

amount of correlation energy recovered 

E(APSG - E(HF) (1.48) 

increases almost linearly with nuclear charge. This is surprising since 

the APSG Ansatz is general enough to yield the exact wavefunction for 

z'̂  = 0. 

Comparison with other investigations 

To date several quantitative investigations of the beryllium atom 

within the separated pair approximation have been reported. Allen and 

Shull (1962) estimated that the "separated pair projection" of Watson's 

configuration interaction wavefunction (Watson, 1960) would give 85.68 

per cent of the correlation energy. Szasz (1963a) obtained 69.7 per cent 

of the correlation energy by using a wavefunction which contained pair 

correlations without requiring strong orthogonality. 

For beryllium-like atoms, Linderberg and Shull (1960) and Watson 

(1961) performed a calculation which can be considered as a separated pair 

2 2 2 2 
approximation containing two configurations. Is 2s and Is 2p . McWeeny 

and Sutcliffe (1963) also applied the separated pair approximation to 

beryllium-like atoms. The accuracy of their results is between that of 

APSG ̂  and APSG ̂  as reported in Figure 14. 

The calculations of Tuan and Sinanoglu (1964) and Geller, Taylor 

and Levine (1965), which embody Sinanoglu's many-electron theory and arp 
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related to the separated pair concept, will be discussed in a subsequent 

section. 

Correction for K-geminal defect 

The well known r^^ behavior of the K-shell cannot be described 

completely by a finite natural orbital expansion. By comparison with 

helium-like atoms, it can be expected that even for the separated pair 

approximation ̂  this type of deficiency may lead to an error of 0.002 

a.u. in the energy. In order to arrive at an estimate of this error, let 

E(SP) be the energy of the exact separated pair approximation and E(APSG $.) 

that of APSG , so that 

E(SP) = E(APSG (1.49) 

defines the difference D^. If arises from the K-shell only, it can be 

compared with the analogous error obtained for the corresponding two-

electron ion. Let E^^ be the exact energy of that ion and E^^* the energy 

obtained for it with the approximate wavefunction constructed from the 

same basis orbitaIs as ̂  so that is defined by 

(1.50) 

One might expect to be a minimum estimate for , so that 

(1.51) 

where all three quantities are negative. If 60^ is small compared to 

then Is a reasonable estimate for the defect D^, 

To obtain comparative separated gemlnal energies E(APSG ̂ ) and E^*^, 
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the calculations should contain the same number and symmetry types of 

K-geminal NO's in both systems. Because the accuracy of the NO's depends 

on the basis set chosen, it also is important for the determination of 

the NO'S and occupation coefficients to choose comparable basis sets for 

each case. Two possible choices are conceivable: either (i) to use all 

the STAO's occurring in the four-electron wavefunction or (ii) to use only 

the K STAO's of the beryllium-like atoms. Further, the STA.0 exponents 

may be re-varied or taken directly from the four-electron atoms without 

change. For a given basis set the energy then is minimized by 

optimizing the transformation T and the occupation coefficients. For­

tunately there is no significant difference between the results obtained 

with the various assumptions. Thus, the energy values obtained for 

several atoms with the use of the bases (i) and (ii) for fixed STAO 

exponents and with the basis (ii) for optimized STAO's are within 0.0004 

a.u. of each other. This deviation is small compared to The 

results E^^^ and are given in Figure 15. (E^^^ is calculated with 

basis (i); E^^"*", with basis (ii). The orbital exponents of the four-

electron systems are used in both cases.) The values listed in Figure 14 

for the extrapolated separated pair approximations are obtained from the 

energy estimate 

E(SP) = E(APSG ̂ ) + (1.52) 

Comparison with Calculations Based on Sinano§lu's Theory 

Very accurate calculations for beryllium have been made by Tuan 

and Sinano^lu (1964), hereafter referred to as TS, and Geller, Taylor and 
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Levine (1965), hence referred to as GTL, who use Sinanoglu's many-electron 

theory (Sinanoglu, 1962a, 1962b). The following two factors are pertinent 

in order to relate their work to the present work, (i) Edmiston (1963b) 

has shown the following: Within the limitation to intrashe 11 correlations 

Sinanoglu's method represents "a single iteration, beyond SCF, in separated 

pair theory" including certain additional simplifications which imply 

that all electronic interactions between the changes of the geminals beyond 

the Hartree-Fock approximation are neglected. (ii) GTL have stressed 

that application of Sinanoglu's scheme does not reduce the "many-electron 

problem to a set of two-electron problems". The difficulties encountered 

arise from the antisymmetrization of the wavefunction and are the usual 

ones, such as the presence of cluster integrals when interelectronic 

coordinates are used. The following remarks can therefore be made with 

regard to the similarities and differences between the investigations of 

TS and GTL and the present work. 

1. In the present investigation a solution for the separated pair 

approximation is obtained by means of the variational principle applied 

to the total wavefunction. The investigations of TS and GTL represent a 

solution of the same problem by means of a perturbation calculation 

starting with the Hartree-Fock approximation. (The two-electron perturba­

tion equations are solved variationally but the variational principle is 

not used for minimization of the total energy.) For the beryllium atom 

GTL obtain the total energy -14.659420 a.u. exclusive of intershell 

correlations which is in remarkable agreement with the present result of 

-14.65923 a.u. for §gp. Unless second and higher order terms cancel 
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each other due to alternation in sign, the agreement indicates that the 

higher perturbations are negligible. Support for this conclusion is 

evident from the fact that interactions of the weakly occupied natural 

orbitals seem to be negligible, as will be shown by the analysis in the , 

section on partitioning of energy. The complete neglect of these terms 

can, of course, also be incorporated without any difficulty in the present 

method of obtaining the separated pair approximation (if such neglect is 

known to be valid in advance). Whereas the variational method always 

furnishes an upper limit, this is not guaranteed within the perturbation 

approach when the higher order perturbations are no longer negligible. 

2. In the present work the K-geminal is represented by a natural 

orbital expansion, but it is expressed with the help of interelectronic 

distances in the investigations of TS and GTL. (The latter also tested 

r^^ for the L-shell but found it to be less effective than the orbital 

representation.) The NO expansion leads to a greater number of electron 

interaction integrals, but the use of r^^ leads to more complex and more 

difficult integrals. In the current implementation and in that of GTL 

the time required to calculate one energy value appears to be comparable 

for the most complex wavefunctions. However, for molecules it would 

appear next to impossible to use interelectronic distances in the K-shell 

with the present knowledge of integral evaluations. 

3. The investigations by TS and GTL are based on previous knowledge 

of an explicit SCF function. Since, in the work of GTL, the correlation 

correction to the wavefunction contains only one orbital exponent, minimiza­

tion with respect to this non-linear parameter was not too time consuming. 
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In the present work all natural orbitals including the principal ones were 

determined a^ initio. In view of the NO expansions of the K-shell, many 

non-linear parameters were minimized and this procedure was of course 

time consuming. Efficient use of minimization results from the simpler 

APSG's $2 3nd was therefore essential in order to save computer 

time in the determination of APSG In future molecular applications 

one would start with rather accurate knowledge of NO expansions for the 

inner shells so that the corrective K-shell minimizations would presumably 

be rather trivial. 

4. The figures in the previous sections exhibit the explicit wave-

function in a very simple form, viz., in terms of the natural orbitals. 

Neither TS nor GTL list the four-electron wavefunction which corresponds 

to their energy values. It appears likely that for other applications 

the separated pair approximation in natural orbital form would be an 

easier function to use. A very interesting question is how closely the 

total energy values obtained by TS or GTL would agree with the expectation 

values of the Hamiltonian operator calculated from their corresponding 

wavefunctions. 

5. Both methods permit an analysis of the correlation energy and 

thus give insight into the origin of the energy lowering. A comparison 

of the two types of analyses will be discussed in the section on 

partitioning of energy. The present analysis which is somewhat more 

detailed, appears to suggest a possible improvement of Sinanoglu's method 

in cases where several geminals have more than one strongly occupied 

orbital. 

6. All previous remarks apply exclusively to the intrashell 
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correlation calculations of TS and GTL, Sinanoglu's theory also predicts 

intershell correlation energies, and approximate values for these have 

been obtained by TS. These correlation effects cannot be obtained, of 

course, within the framework of the separated pair approximation. This 

matter will be taken up in Part II which deals with the addition of suit­

able configuration interaction terms to the separated pair approximation. 
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ENERGY ANALYSIS IN THE SEPARATED PAIR APPROXIMATION 

General Partitioning and Correlation Energy 

It is clearly of interest to understand how the separated pair approxi­

mation leads to a substantial energy lowering. To gain such insight an 

appropriate partitioning of the energy is indicated in the hope of finding 

major, minor and negligible contributions. Such an analysis would also 

illuminate the understanding of correlation energy since a major part of 

the latter is recovered by the separated pair approximation. It stands 

to reason that the desired partitioning would contain intrageminal and 

intergeminal contributions, and a further decomposition into natural orbit­

al contributions appears likely. It is a straightforward matter to decom­

pose the Energy Expression 1.12 into the form 

E(SP) = E(PNO) + AE (1.53) 

where 

E(PNO) = Z£(mO,UO) + ZtJl(luO,vO) (1.54) 
M u<v 

is the energy of the antisymmetrized product (AP) built from the principal 

natural orbitale of each of the separated geminals. The definitions of 

£(jLtO,vO) and t(?(/iO,vO) are those of Equations 1.14 and 1.16. Because in 

the previous discussion of the principal NO's it was found that E(PNO) 

very closely approximates the Hartree-Fock energy, the lowering AE 

defined by Equation 1.53 very nearly represents the correlation energy 

recovered in the separated pair approximation. The following ana lysis of 

AE therefore essentially furnishes an understanding of the correlation 

energy recovered in the separated pair approximation. 
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Subtracting Equation 1.54 for E(PNO) from Equation 1.12 for E 

immediately yields the following decomposition of into intragemina1 

and intergeminal correlation contributions 

= Z ̂E(u) + Z AE(w,v), (1.55) 
U M<V 

where 

AE(M) = E(/i) - <£(MO,MO), (1.56) 

AL(M,V) =I(A,v) -O^(MO,VO). (1.57) 

A further partitioning according to natural orbitals is obtained by 

substitution from Equations 1.14 and 1.16, namely, 

AE(u) = E A£(/ji,/ij), (1.58) 

AE()Li,v) = Z At^(jLii,vj) (1.59) 
i,j 

where the following definitions are being introduced: 

A£(Mi,/ni) = C^̂ {̂<£(/ii,ui) -£(uO,mO)>, (1.60) 

A£(ni,p.2) = C^^C^^£(Mi,Mj) (i j) (1.61) 

and 

2 2 
A^(Mi,vj) = C^/^(Mi,Vj) -t/?(MO,vO)>. (1.62) 

In those cases where the separated pair approximation-is effective, 

one would expect the intragemina 1 correlation contributions AE((i) to be 

dominant; and in the systems investigated here, they are indeed found to 

be the source of the energy lowering: they are negative and much larger 
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than the intergeminal correlation contributions A[(M,V). Moreover, the 

latter are sometimes negative and sometimes positive. The intrageminal 

contributions AE(ju) of Equation 1.58 contain two kinds of terms, the "off 

diagonal" terns A6(jni,juj) (i / j) and the "diagonal" terms A£(/ii,Mi). 

The former are exchange energies; the dominant ones are negative and 

represent the essential source of the energy lowering furnished by AE(ju). 

The latter must be considered as the "promotion energies" arising from 

that amount of charge occupying the orbitals (/ji) for i ^ 0; they are 

positive and partially cancel the negative exchange energy. A crucial 

point of the following analysis is the observation that for the weakly 

occupied NO's this cancellation eliminates almost exactly one half of the 

exchange energy. 

Quantitative insight into this matter is obtained by writing Equation 

1.58 as follows: 

AE(M) = Z ASCui) (1.63) 
i 

with 

A£(wi) = Z A£(Mi,)Lij). (1.64) 
j 

The A6(/ii) are orbital correlation contributions; the AE(jui,^j) are 

orbital interactions. The observations just made correspond to the fact 

that only the strongly occupied natural orbitals contribute substantial 

contributions A£(ui) AND that the dominant ones, in particular A£(MO), 

are negative. Reasons for this can be seen in the following argument. 

By multiplying the Eigenvalue Equation 1.22 with by subtracting 

C ,C .£(yO,/iO)ô. , from both sides of the resulting equation and, finally, 
ij 
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by substituting Equation 1.19 fortf(ui), one finds the relation 

A£(jLti) = -C - e + Z ^W,vO) 

+ Z zc /W(^ti,vj) -^(mO,VO)]}. (1.65) 
v(;4i) j \':i 

The double sura in the parenthesis will be small compared to the other terms 

because the differences W(|Lti,vj) -ti?(MO,vO)] are usually small; and 

2 
moreover, only a few of the C^j are substantial, namely, those of the 

strongly occupied NO's. Consequently the total expression in braces 

depends only weakly upon the index i, and the approximate relations 

yj 

are found to be valid to within an order of magnitude. Hence the contribu­

tions from the strongly occupied NO's far outweigh the others in Equation 1.63. 

Further insight into the orbital correlation contributions AS(|Ui) 

of Equation 1.64 is obtained by writing 

A£(Mi) =A£(Mi,Mi) + Z A£(ui,w). (1.67) 
j(/i) 

Consider first the principal contributions A£(UO). By inserting 

Equations 1.60 and 1.61, one obtains 

ASCmO) = C n z C £(mO,uJ). (1.68) 
j(/a) 

According to Equation 1.14 the exchange integrals £(yO,/ij) (j j: 0) are all 

positive. Since A6(nO) is the largest negative orbital correlation con­

tribution to AE(ju) in Equation 1.63, it follows that the more important 
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coefficients C^j must be negative if C^Q is chosen to be positive. 

Consider next contributions AÊ(iui) for i ^ 0 arising from secondary 

natural orbitals which, though not principal NO's, are still strongly 

occupied. First it is to be noted that A£(p . i , u i )  is positive since, 

according to Equation 1.60, it represents the energy required to promote 

2 
the fraction of an electron from the lower orbital (juO) to the higher 

orbital ( p . i ) .  (This is mostly a kinetic energy effect.) On the other hand, 

the orbital interaction AG(juO,|u,i) is negative because it is the same one 

which appeared in A£(/uO). A partial cancellation between A£(iui,ui) and 

AêCmOJMÎ) occurs. The remaining terms are much smaller. The result 

AE(jui) is negative but, smaller than AÊ(iuO). 

Finally consider AE(jui) for the weak orbital correlation contribu­

tions. Again A£(Mi,/ii) is positive as before. But the argument leading 

to Equation 1.65 showed that A£(iui) is very small; so that, there is now 

a nearly complete cancellation by the terms A£(^i,uj) for j ̂  i. In this 

case the promotion energy for orbital (^1) is almost exactly balanced by 

one half of the sum over all orbital interactions with (lui), viz., 

A£((ii,(ii) = Z A£(|ii,iLij). (1.69) 
j(̂ i) 

The largest of these are the A£(ui,M.O); and they can, therefore, be 

expected to be negative. 

These considerations lead one to anticipate that the coefficients 

for j / 0 are negative for major as well as for minor admixtures; 

i.e., they lead to the following general conjecture: If the principal 

natura1 orbita1 coefficients are chosen positive, then all other natura1 

orbitals have negative coefficients, provided that the separated pair 
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approximation is effective. All cases considered in this investigation, 

as well as the results for the helium atom reported by Shull and Lowdin 

(1959) and those for the hydrogen molecule reported by Davidson and Jones 

(1962), substantiate this conjecture. On the other hand, the determina­

tions of the natural orbitals for the hydrogen molecule by Hagstrom and 

Shull (1959) and for the ion by Shull and Prosser (1964) did yield 

a few very weakly occupied natural orbitals with positive occupation coef­

ficients. In view of Davidson and Jones's work, this may be a spurious 

result which could have arisen from numerical truncation errors. 

Quantitative Discussion of Beryllium-like Systems 

In the beryllium-like systems Equation 1.55 becomes 

AE = AE(K) + Z^(L) + AI(K,L). (1.70) 

Moreover the K-geminal has only one strongly occupied NO, namely, the 

principal one (Kls); all other (Ki)'s are very weakly occupied. The L-

geminal has two strongly occupied NO's: the principal one, (L2s) with 

occupation number 0.9; and the secondary one, (L2p) with occupation number 

0.1. One finds that almost all the energy lowerings are accounted for 

by the leading terms 

AE(K) = A£(Kls), (1.71) 

AE(L) ~ A£(L2S )  + A £(L2p), (1.72) 

A[(K,L) ~ AT?(Kls,L2p). (1.73) 

The remaining terms of Equations 1.59 and 1.63 contribute virtually nothing. 

(In beryllium they contribute 0.00005 a.u. to a AE of 0.08554 a.u.) 
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According to Equation 1.64, the three orbital correlation contribu­

tions on the right hand side of Equations 1.71 and 1.72 are sums of inter­

actions with all other natural orbitals. This resolution of A8(K1S), 

A£(L2S) and A£(L2p) in terms of orbital interactions is illustrated in 

Graph 1 for the case of the APSG of beryllium. Qualitatively identical 

graphs are obtained for the other systems. 

The exact quantitative breakdown of the energies is exhibited in 

Figures 16 through 23 for the wavefunctions $2» ^3 snd respectively. 

These data substantiate the main points just made and furnish many interest­

ing insights into the correlation energy. Particularly remarkable is the 

fact that, for any given atom, the individual orbital contributions 

A£(Kls,Ki), A£(L2s,Lj), A£(L2p,Lj) and A«f(Kls,L2p) have very nearly the 

same value for the APSG's and 

A graphical representation of the dependence of the various energy 

contributions on Z for is given in Graph 2. All energy contributions 

show a near-linear dependence on Z. This dependence is very weak for the 

total K-shell lowering AE(K) and for all its components A£(Ki,Kj), but 

they are not as constant as in the helium-like systems. The dependence 

on Z is strong for the total L-shell lowering AE(L) and all its components 

A£(Li,Lj). It is noteworthy that the intergeminal interaction AI(K,L), 

too, exhibits a strong linear dependence on Z, a correlation which shows 

the negative value of this quantity in lithium -1 to be consistent with 

the positive values in all other atoms. The total energy lowering 

E(APSG <i^) - E(PNO) has a slope (-0.0122) almost identical with the 

theoretical slope (-0.01173) of the correlation energy (E(exact) - E(HF)). 

This fact seems to imply that APSG ̂ is general enough to recover that 
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On the basis of the present analysis it finally becomes possible to 

understand better the results obtained for the "improvement" due to 

certain natural orbitals which were reported earlier in Figure 3. For 

example, in Figure 17 the contribution for beryllium from APSG ̂  for the 

(K4f) NO is A£(Kls,K4f) = -0.00061 a.u.; for the (L2p) NO the contribu­

tions are 2AÊ(L2s,L2p) + A£(L2p,L2p) + A«f(Kls,L2p) = -0.04426 a.u.; for 

the (L3d) NO they are A£(L2s,L3d) + AE(L2p,L3d) = -0.00043 a.u. etc. These 

numbers agree very closely with the corresponding ones in Figure 3. The 

agreement between the two methods of assessing the energy contributions 

for each NO and the unique character of the energy contributions for each 

NO in the energy partitioning suggest that a separated pair approximation 

using as many NO's as possible may be chosen arbitrarily and then analyzed 

to determine the importance of each NO. 

Secondary Natural Orbitals, Dynamical 

and Non-dynamical Correlation 

Suppose that a geminal has several secondary natural orbitals (SNO's), 

then the matrix of orbital interactions, whose sum appears on the right 

hand side of Equation 1.58, can be divided into three groups of elements 

according to their relative importance in the following way; 
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II 

II 

II 

II III 

II 

III 

II 

II 

Block I contains the interactions between the principal no and the secondary 

no'S and those between the latter, i.e., the terms 

= z®V â£(mi,mk) 
i k 

St . 
where z indicates a sum over the strongly occupied NO's only. The 

elements in the areas indicated by II are the interactions of the strongly 

occupied NO's and the weakly occupied NO's plus the promotion energies of 

the latter. Their sum is 

= aa6w,wi) +2ẑ *̂ aew,nk)}= z® v̂ a£(ni ,mk) (1.74) • 
i k k i 

where Z^^ indicates summation over the weakly occupied NO's, The elements 

in area III, finally, being interactions of weakly occupied NO's only, are 

negligible so that 
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AE(ju) = +AE®"(iu). (1.75) 

This decomposition of AE(u) is analogous to the decomposition of the cor­

relation energy into a "dynamical" and a "non-dynamical" part (Tuan and 

Sinanoglu, 1964); represents the dynamical part of AE, and AE^*" 

represents the non-dynamical part. The latter occurs only if secondary 

orbitals are present because AS(p.O,iJ.O) = 0. 

Furthermore, from the example of beryllium, it can be seen that only 

the interactions of the strongly occupied NO's contribute to the right 

hand side of Equation 1.59 

A[(m,v) = a[®̂ (m,v) = ẑ vww,vj); (1.76) 
i j 

i.e., the intershell interactions are essentially non-dynamical. Because 

A'rf(MOjVO) = 0, they too arise only if secondary NO's are present. One can 

partition the intergeminal contribution AI(/Lt,v) as follows; 

AI(iLi,v) = A Î(m,v) + A I (̂m,v) + A L (ju,v), (1.77) 

A„I(m,v) = z à4(ui,v0) z z®®''AAMI,VO), (1.78) 
m (/A) llfu) 1 

A I(m,v) = Z AxS(mo,vj) ~ 2®"A>̂ m0,vj), (1.79) 
V j(/A) j 

^(m,v) = z Z A4iu±,V3) ~ Z®"z®®''Arf(ui,vj) (1.80) 
i(/a) j(/a) i j 

where z^^^ indicates summation over secondary orbitals only. One can now 

argue that A Î(m,v) contains interactions which are generated only by 

correlations occurring in the /i-geminal, that A Î(miV) contains inter­

actions which are generated only by correlations in the v-geminal and 
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that, therefore, 

Z^(]U) =  AE(u )  +  E  AI(M,V) (1.81) 
v(̂ «) " 

could be considered as the total correlation contributions of geminal /j, 

in the context of the total system. With this philosophy the energy 

decomposition given by Equation 1.55 can then be rewritten as 

^=zâe(u)+ z (1.82) 
U M<V 

In the case of beryllium this would mean rearranging Equations 1.70 to 

1.73 in the form 

AE = Z^(K) + ̂ (L) + M(K,L), (1.83) 

Z^(K) = ̂ (K) + Z^I(K,L) = = A£(Kls), (1.84) 

Z^(L) = AE(L) + Z^I(K,L) ~ AE®"(L) + AE®^(L) + M(Kls,L2p), (1.85) 

AE®^(L) =A£(L2p,L2p) + 2A£(L2S,L2p), (1.86) 

AE^^(L) = A6(L2s) + A£(L2p) - AE®^(L), (1.87) 

Ar(K,L) ~ 0. (1.88) 

The L-shell correlation energy usually quoted for beryllium corresponds 

essentially to the definition in Equation 1.85. 

The foregoing analysis shows, however, that the weak interactions 

A[(K,L) do not find a logical place in this type of decomposition. More­

over, in general, there may occur additional non-negligible intergeminal 

terms A[(iU,v) between secondary NO's of different geminals; and if this 
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happens, the advantage of defining the becomes questionable. At any 

rate it must be realized that, even in the separated pair approximation, 

there exist intergeminal interactions, usually of unfavorable type, which 

are engendered by the intra-orbita1 correlations. It may also be men­

tioned that, when non-negligible interactions An(^,v) occur and are strong 

enough, they would have to be incorporated in Sinanoglu's treatment where 

they are omitted presently. 

Comparison with Other Methods of Analysis 

A crucial point of the foregoing analysis is the specific grouping 

of terms adopted in Equations 1,63 and 1.64 because it leads to the result 

that most of the quantities are negligible, as explained by 

Equation 1.65. It is in this respect that the present approach differs 

from an analysis given recently by Ebbing and Henderson (1965) in their 

work on lithium hydride. These authors essentially use an expression 

like Equation 1.58 without any further grouping of terms. An analysis 

of Ebbing and Henderson's separated pair approximation of lithium hydride 

according to the present scheme is given in Figure 24. The general 

pattern is in agreement with the preceding discussion. The inner geminal 

(I) is a K-geminal; the outer geminal (0) is the bonding geminal. There 

are two secondary NO's in the outer geminal, but neither is as important 

as the (L2p) NO in beryllium. Remarkable is the fact that AS(0x3) is 

positive (the promotion energy is larger than the exchange terms); it 

will be of interest to see whether this remains true in a more accurate 

calculation. 

Kutzelnigg (1963a, 1963b and 1964) has given an approximate expression 
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for the energy lowering AE. In the present notation it can be written 

AECKutzelnigg) ~ 2 Z (C ./C J5()Lii,iuO). (1.89) 
m i(̂ 0) 

This equation is derived under the assumption that every geminal has, in 

addition to the principal NO, only weakly occupied NO's but no moderately 

occupied secondary NO's. In this case one can write C « = 1 - x „ with 
iu0 luo 

\0 « 'hat + 2x^g; hence 

AE(Kutzelnigg) = Z A£(nO) (1.90) 

m 

which is indeed a good approximation in this special case. However, if 

there are secondary NO's such as in the beryllium L-gerainal, there appear 

not only additional intrageminal terms but also intergeminal terms as 

discussed in the preceding section. Another insight into the Approximate 

Relation 1.90 is obtained by considering a two-electron case, such as 

helium, which has only a K-geminal. It can be shown exactly that 

AE = AE(Kutzelnigg) = A£(K0) + (1 - C^Q^)AE. (1.91) 

The last term is negligible if all NO's except the principal ones are 

weak. 

Finally, it is of interest to compare the present partitioning of 

the energy with partitionings based on perturbation treatments. There 

are three calculations of comparable accuracy, namely, that of Kelly 

(1963, 1964) who uses the Brueckner-Goldstone perturbation theory and those 

of Tuan and Sinanoglu (1964) and of Geller, Taylor and Levine (1965) who 

use Sinanoglu's many-electron theory. A comparison and critical summary 

of various calculations are given in Table V of GTL. Close agreement 
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with the present work is obtained if one compares their correlation 

energies (Is^), (2s^) with /!£(K) and ^(L) respectively, 

as discussed in the preceding section. The comparison is made in Figure 

25. 
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INTERELECTRONIC COORDINA.TES IN THE PAIR 

APPROXIMATION FOR BERYLLIUM 

Object and Scope 

The success of introducing interelectronic coordinates into helium­

like systems (Hylleraas, 1929; Pekeris, 1958, 1959; Kinoshita, 1957, 1959; 

Roothaan and Weiss, 1960; Kolos and Roothaan, 1960) has led many inves­

tigators to include pair correlations in beryllium-like systems by intro­

ducing interelectronic coordinates. Szasz has formulated the mathe­

matics of certain wavefunctions of this type and has applied this method 

to beryllium. 

Such wavefunctions transcend the separated pair approximation even 

if the r^^ terms are introduced only for intrashell correlations, because 

geminals containing interelectronic coordinates violate the strong 

orthogonality condition. It was therefore considered to be of interest 

to test the importance of the additional freedom introduced by such terms 

and to investigate wavefunctions of the form 

| = a g $ + X  ( 1 . 9 2 )  

where <§ is the separated pair approximation and X is a correction of the 

type 

4{k(1,2)0̂ (̂1,2)l(3,4)ĝ (3,4)f(r̂ 2,rĝ )}. (1.93) 

If 2(^12'^34) ® product g(r^2)'h(r2^)-l, then the Ansatz $ would 

classify as an antisymmetrized product of geminals (APG). 

In order to keep the problem tractable, the following simple form was 
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assumed for the correction function: 

* = % + (1-94) 

Xg = Nj^^{K(l,2)r^2^(l,2)L(3,4)9j^(3,4)>, (1.95) 

= N^^{K(1,2) 8^( 1,2)L(3,4)r^^8^(3,4)} (1.96) 

where and are normalization constants and 

K(l,2) = [lsK(l)][lsK(2)], (1.97) 

L(3,4) = [2sL(3)][2sL(4)] (1.98) 

are products of the principal STAO's of the K- and L-geminals. It is 

believed that the results would not be very different if one would use 

the separated geminals K(l,2) and L(3,4) for K and L. Perhaps inclusion 

of the (L2p) NO (or in the above approximation the (2pL) STAG) in L 

would have some effect; but most likely, it would be no larger than 4.4 

per cent of the (L2s) contribution, which is the contribution of this NO 

to the L-geminal energy of the separated pair approximation. 

However for a given choice of #, three calculations were made. In 

the first, the orbital exponents in K and £ were taken to be those of 

the separated pair approximation. In the second, the orbital exponents 

in K and L were optimized. In the third, the occupation coefficients in 

$ were also readjusted. 

It is also believed that similar results would be obtained if in 

Equation 1.93 one would put 

*̂ 1̂2*̂ 34) = (1 + *k̂ 12)(1 + ®l̂ 34̂ * (1.99) 
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That is, the cross term would be expected to have little influence; and 

hence, the present results will shed at least some light on the limita­

tions imposed by the strong orthogonality constraint. 

Method 

For the separated pair approximation two wavefunctions of the 

type 

1̂ ®01̂ 1 ®kl\l (1.100) 

were investigated: (1) with the orbital exponents in and equal to 

those in (2) with the orbital exponents in and X^ reminimized. 

For the separated pair approximation three wavefunctions 

^2 ̂  ®02^2 ®K2^2 •*" ®L2^L2 (1.101) 

were investigated. In addition to the two mentioned for a third was 

found by reminimizing also the occupation coefficients in . 

In all cases there results a three by three secular equation of the 

type 

z(h. .-xs.ja = 0. (1.102) 
J IJ J 

The matrix elements consist of very complex integrals involving r^^ terms. 

Techniques for solving such integrals have been proposed by Szasz (1951), 

Bonham (1965) and Shrn and Nordling (1963). In the present calculation, 

the method of the last mentioned authors was used. The amount of 

algebraic formalism and manipulation as well as computer programming 

required for this part of the work was more laborious and time consuming 
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by an order of magnitude than that needed for the investigation of 

separated pair approximations. It is much easier to add three basis 

orbitala to APSG and seven basis orbitals to APSG than to include 

r^, J-dependent terms in APSG ̂  or APSG 

Thus, the amount of work as well as computer time and storage needed 

for carrying out similar calculations for ^nd would have been so 

staggering that it was not considered a worthwhile investment. 

Results 

The wavefunctions and energies obtained in this way are listed in 

Figure 26. For calculation three, the modified occupation coefficients 

are 

crls = 0-9,962 = 0.94155 

cms = = -0.19449. 

Cg, = -0.01001 (1.103) 

The trends in energy improvement show that the energy calculated with 

APSG is better than that calculated with APG which contains inter-

electronic coordinates. This suggests that it is more advantageous to 

refine a separated pair approximation by adding more natural orbitals 

than by including interelectronic coordinates since (i) the computation 

time needed to calculate E(APG is six times that needed to calculate 

E(APSG for i = 1 and 2; and (ii) if either the APG or the APSG is 

used as first term in a wavefunction which is being further improved to 

include intergeminal correlations, then the difference in ease of manipula­

tion will be even more pronounced. 
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On the basis of the present results it is of course not possible to draw 

completely cogent conclusions regarding the difference between the pair 

approximation and the separated pair approximation. However, if ̂  of 

Equation 1.101 is a reasonable approximation to the pair approximation 

without the strong orthogonality constraint, then the energy improvement 

E(APG - E(APSG $2) an approximate measure of the effect of reliev­

ing this constraint in . Better estimates would be obtained, of course, 

by carrying out the analogous calculations for and 

A calculation of the beryllium ground state in the pair approxima­

tion without strong orthogonality restrictions has also been made by Szasz 

(1963a) who used a wavefuntion containing powers of r^, r^, r^^ and r^^. 

Rather surprisingly this calculation recovers only 73.6 per cent of the 

intrashell correlation energy which is not even as good as that obtained 

with APSG III light of the present investigation, the only deficiency 

of Szasz's wavefunction is the absence of even powers of r^^ and r^^ 

2 
which correspond to terms in the natural geminal expansions. 

However for the K-shell, r^^ would be expected to be just as effective; 

2 
and, for the L-shell, the substitution of r^^ for (L2p) would not be 

expected to worsen the results by 15 per cent. See the calculations of 

Geller, Taylor and Levine (1965). The only explanation seems to be that 

the handling of r^^-dependent terms is so complex and time consuming that 

exhaustive minimization with extensive expansions has not yet been 

achieved. 

In spite of the incomplete evidence, the present investigation 

suggests that rather than to improve the separated pair approximation to 
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the pair approximation, it may be wiser and more effective to include 

sufficient basis functions in the separated pair approximation and then 

recover the remaining correlations via the augmented separated pair 

expansion which is discussed in Part II. 
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PART II. AUGMENTED SEPARATED PAIR EXPANSION 
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Although in many atomic and molecular systems the separated pair 

approximation represents a great improvement over the Hartree-Fock approxi­

mation, its total energy still appears to fall slightly short of chemical 

accuracy, and it may be necessary in certain cases to look for ways of 

further improving the electronic wavefunctions. In the beryllium atom, 

for example, the separated pair approximation recovers about 90 per cent 

of the correlation energy leaving an error of about 0.008 a.u. or 5 kcal. 

While the shortcomings of the separated pair approximation are usually 

attributed to two deficiencies, viz., the limitations arising from the 

strong orthogonality conditions and the failure to take into account cor­

relation between different geminals, it is quite possible that these two 

inadequacies are not substantially different in nature. So far, no prac­

tical attempt has been made to improve the separated pair approximation 

consistently. 

Even though the separated pair approximation may not lead to results 

within chemical accuracy, there can be little doubt that it is excellently 

suited as zeroth-order approximation for a more exact calculation. The 

advantage of the separated pair approximation over the Hartree-Fock approxi­

mation is not only that it is much closer to the true solution but, more­

over, that it generates a set of natural orbitals which are close to the 

true natural orbitals of the problem. Since the latter are known to lead 

to the most rapidly converging configuration interaction expansion (Lbwdin, 

1955), the natural orbitals of the separated pair approximation can be 

expected to be highly appropriate for constructing additional configura-
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tions which effectively augment the separated pair approximation. This 

approach has the additional advantage that the refinement does not require 

any new basis integrals beyond those which occur already in the separated 

pair approximation itself. 

The only extensive previous configuration interaction calculations 

which have made use of the variational principal are those for the beryl­

lium- like atoms by Watson (1960) and by Weiss (1961). Watson's calcula­

tion indicates some of the configurations which recover correlations beyond 

the separated pair approximation. The calculation by Weiss, on the other 

hand, is rather awkward to analyze since it is based on configurations 

formed from non-orthogonal basis orbitals. The calculations of intershell 

correlation energy by Sinanoglu (1962a, 1962b) and by Kelly (1963, 1964) 

do approximate the energy lowering beyond the separated pair approximation, 

but with perturbation theory taking the Hartree-Fock solution as a zeroth-

order wavefunction. The consideration of possible configuration inter­

action wavefunctions by Kapuy (1960c, 1961a) built from two- as well as 

many-electron group functions does not include all possible configurations, 

because geminals in different configurations are postulated to be one-

electron orthogonal. It appears doubtful whether this would be effective, 

even if Kapuy's complex formalism could be executed. 

In the present investigation a refinement of the separated pair 

approximation is developed, in which the wavefunction is represented as 

an "augmented separated pair expansion" 

^ ^ ^0% ^1^ •*" ^2%. ^ 

where each term is an antisymmetrized product of separated space geminals 
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and spin eigenfunctions. The "separated pair configuration" is identical 

with the separated pair approximation; the "augmented separated pair 

configurations" y^(k > 1) are formed, according to certain simple rules, 

from the natural orbitals of the separated pair approximation. In the 

course of applying this approach to the beryllium-like atomic systems, 

straightforward criteria are found for identifying those relatively few 

augmented separated pair configurations which are effective in recovering 

most of the intershell correlation energy. 

In this way, 96 per cent of the total correlation energy was recovered, 

equivalent to an accuracy of about 3 kcal in beryllium. The calculations 

were limited by the constraints of the computer used, an IBM 7074 with a 

20,000 word core memory and no provision for double precision in Fortran. 

It is believed that under somewhat more favorable computational conditions 

and with somewhat more experience 98 to 99 per cent of the correlation may 

be recovered with a relatively compact wavefunction built from appropriate 

atomic orbitals. 
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GLOSSARY 

Although all abbreviations are defined in the text, the following list 

may be helpful. 

AP antisymmetrized product 

APSG antisymmetrized product of separated geminals 

SPA separated pair approximation 

wavefunction corresponding to the exact separated pair 

approximation 

^, APSG the i-th approximation to 

SPC separated pair configuration; identical with SPA in the 

context of the augmented separated pair expansion 

ASPC augmented separated pair configuration 

ASPE augmented separated pair expansion; an expansion contain­

ing the SPC and several ASPC 's 

, ASPE the i-th approximation to the exact ASPE 

AP-SH-G antisymmetric product of a spin harmonic and geminals 

AP-SH-SG antisymmetric product of a spin harmonic and separated 

geminaIs 
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WAVEFUNCTION AND ENERGY IN THE AUGMENTED 

SEPARATED PAIR EXPANSION 

Expansion in Spin Harmonics and Geminal Products 

Expansion in terms of spin functions 

If the Hamiltonian of an N-electron system commutes with the total 

spin, then the wavefunction can be written as a sum 

D-1 

% (2.1)  
a=u 

with 

X  =  ( 2 - 2 )  

where the 

8 (1,2,...N) for a = 0,1,...D-1 (2.3) 

with 

D = (#!r)(î ''̂ ) (2.3') 
p-s 

2 
are D pure spin functions and eigenfunctions of vS and v? with eigenvalues 

y&^S(S+l) and (Aim ) respectively. The functions F (1,2,...N) are pure 
H Z S <X 

space functions, and 9^ is the total antisymmetrizer of N-electrons. 

The D spin functions can be constructed by the branching diagram 

N 
method and form a basis for the irreducible representation Dg of the 

permutation group S^; so that for any permutation, one has 

<p). (2.4) 
a 

and the T „ can be obtained as the matrix elements 
ap 
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' (2-5) 

Thus the functions can also be written 
'a 

_1 

ta ' ° (2-g) 

1 

fpa ' (?:%)' (2-7) 

from which it can be seen that the set (f, ,f_ ,...f_ ) forms a basis which 
la ô, Da 

transforms according to the representation which is conjugate to Dg^. 

The D functions $4(G^F), which can be constructed from one space 

function F, are linearly independent if the Nj functions (PF) are linear­

ly independent. On the other hand, the D functions ̂ (9 F') which are 
a 

generated from the space function F' = P^F, where P^ is an arbitrary 

permutation, span exactly the same linear space as the D functions ̂ (0 F); 

i.e., use of (P^F) instead of F as "primitive function" gives nothing new. 

The previous discussion is developed more thoroughly by Kotani e^ a 1. 

(1955). 

Reduction with respect to gemina1 subgroups 

An important simplification can be achieved by considering that 

particular subgroup of the total permutation group which consists 

of the R simple interchanges 

(12),(34),(56),...(2R - 1,2R) (2.8) 

and all products between them. This is an abelian group of order 2 which 

is the direct product of the R subgroups 
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•Ce , (12)},{e , (34)}, ...{e, (2R-1,R)}. (2.9) 

Each of these subgroups of order two has two irreducible one-dimensional 

representations, the symmetric one {.1,1} and the antisymmetric one {l,-l}. 

The direct product of these two possibilities for each of the R subgroups 

yields the 2 irreducible representations of the group Each of these 

can therefore be characterized by a symbol such as (6^^,62 j where 

= (+) or = (-) indicates that the subgroup {e,(2v-l,2v)> belongs to 

the symmetric or antisymmetric representation respectively. All representa­

tions of are one-dimensional, and each element is either +1 or -1. It 

is furthermore possible to find (N^/2 ) permutations P, none of which are 

in such that all left cosets P.Z^ together form exactly the total 

permutation group Sj^; i.e., any permutation tt can be written in a unique 

way as a product of one of the P's and a member Q of In other words 

TT = PQ. 

By choosing a suitable basis in the space subtended by the spin 

functions D^, it is always possible to cast the irreducible representation 

N 
Dg in that form in which all elements of the subgroup appear in 

reduced form and hence are diagonal. From now on it will be assumed that 

D is that basis in which Zn is reduced. These spin functions 9 will be 

called spin harmonics. 

The Definition 2.2 of can then be rewritten 
'a 

T = 4{e [2"^/^z(-l)^T(Q)QF ]> (2.10) 
CC* CC Q ct 

where Q runs through the elements of z^ and s4 is the partia1 antisymmetrizer 

1 

4 = (2*/N:)2 z(-l)Fp (2.11) 
p 
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with P running through those elements which are needed so that all cosots 

together yield the total permutation group S^. Furthermore, the 

T(Q) are the one-dimensional representation matrices of 2^ generated by 

0 ; so that 
a 

2"^/V.(-1)^T(Q)QF = 2-*/2[e+6'(l,2)][e+f_(3,4)] 
Q a 1. /. 

[e+e3(5,6)]...[e+£j^(2R-l,2R)]F^ (2.12) 

if is the representation of in the basis G^. This 

expression is in fact the projection of F^ with respect to the irreducible 

representation <5^ ,.. .6^^). %t follows that without loss of generality, 

it can be assumed that F belongs to the irreducible representation 

(£^,^2'••» i.e., to that representation of which is conjugate to 

that generated by 0 . 

Expansion of space functions 

In order to apply the variation principle, it is convenient to choose 

a set of expansion functions which are adapted to the problem, such as 

where the F ^ (k = 1,2,...) are judiciously selected functions with the 

appropriate symmetry ,...E^). Combining Equations 2.1 and 2.2, one 

has 

a k 

r,k='^(«aV- (2.15) 
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In order to solve the variational problem, it is necessary to find 

one or several eigenvalues and eigenfunctions of the energy matrix between 

the basis functions From the definition of the partial antisym-

metrizer and the representation properties of the spin factors, it can 

be seen that the matrix elements between the space-spin functions can 

be expressed in terms of those between the space functions F ̂  by the 

formula 

(ajlHlpk) . = Z (-l)'T_^(P)(F^.|HPlFp^) (2.16) 

where the summation extends only over those permutations which are 

contained in the partial antisyiranetrizer and T ^^(P) are the elements 

defined by Equation 2.5. Similarly the overlap integral between and 

will be 

(ajlpk) ".17) 

The optimal wavefunction and energy are given by the solutions of 

Z {(aj|H|pk) - E(ccj||3k)}A . = 0. (2.18) 
P,k P* 

Expansion in terms of gemina1 products 

Consider now a system with an even number N of electrons and let 

the subgroup be chosen as large as possible; i.e., R = jN. 

Let (1,2), V = 1,2,3,... be a complete set of geminaIs belonging 

to the representation &, i.e., symmetric if 6= (+) and antisymmetric if 

£= (-). Then all possible gemina 1 products (CP's) 
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*"1 >^0 > • • •^D £l f O St) 
"V1,V2....V^ , =fi^(l.2)n^ ̂ 3.A)...fi^^2R-l,2R) (2.19) 

where is fixed and = 1,2,3,... for all k's form a 

complete basis for any function belonging to the representation 

* Consequently the space-spin functions 

jfo > . • «Êp 
Y" , , = 94(6 } (2.20) 
'CL >V 2^ >V 2'***R ^ V 2 >V 2 ) # » *^R 

with 

Vj^ = 1,2,3,... for all k's 

form a complete basis for the expansion of T^. Each 'V' might be called 
'a 'a 

an antisymmetric product of a spin harmonic and geminals, AP-SH-G. 

A basis of particular convenience is obtained by choosing the geminals 

in the following simple way. Let a:^(x) be a complete set of orthonormal 

orbitals. Then one can generate the following symmetric and antisymmetric 

geminaIs 

=m^(l)m^2), (2.21) 

0) 
nm 

£0 
nm 

(1,2) = [m^(l)a/(2) + 1)0)^(2)]//2, n ̂  m, (2.22) 

(1,2) = [m^( 1)0^12) - aJl)m^(2)]//2, n ̂  m. (2.23) 

The AP-SH-G'a constructed from these geminals in the manner indicated by 

Equation 2.19 have the following simple property: It is always possible 

to choose the basis of gemina1 products in such £ way that, in any given 

product of geminals, any one orbita1 occurs only within one gemina1. In 

order to understand this, one observes first that an AP-SH-G made from 
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the gemlnals of Equations 2.21, 2.22 and 2.23 will vanish if one particular 

orbital occurs more than twice. Second, IjE a particular orbital occurs 

twice, then it is always permissible to arrange the geminal product so that 

this orbital occurs in the same geminal, and one has a geminal of the form 

(0^^^ given by Equation 2.21. This is so because the linear spaces spanned 

by the set 9^(0^F), a = 0,1,2,3,..., and by the set A(9^F), a = 0,1,2,3,..., 

respectively, are identical if F and F differ merely by a permutation. 

A first consequence of this admissible convention is that any two 

geminaIs and Q,^ occurring in one AP-SH-G of this type are strongly 

orthogonal to each other; i.e., 

J"dV^[fi^^(l,2)f Q^^(l,3) =0, (2.24) 

and consequently, one has an antisyiranetrie product of a spin harmonic and 

separated geminaIs, AP-SH-SG. 

A second consequence is that the AP-SH-G's constructed from the 

geminaIs of Equations 2.21, 2.22 and 2.23 form an orthonormal set. In 

order to see this, consider the overlap integral of and 
'a;v]^,v2... 

TA" , From Equations 2.17, 2.19 and 2.20 one finds 

,M2 » • • • I P >V-j^ >V2 » • • • ) = Z(-l) (P ) ... IPI ^ ...). 

(2.25) 

Since P merely permutes electron coordinates, all space Integrals vanish 

unless the two geminal products contain exactly the same orbitals. 

^ fi 
According to the adopted convention, this implies that fi and fi 

M.i Vj 

contain the same orbitals, i.e., = Vj for all i's, and that only 
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the identity permutation gives a non-zero contribution. Because of the lat­

ter circumstance, together with = 6^, the overlap integral vanishes un­

less the two AP-SH-G'S are identical. If they are identical, one obtains 

unity. 

Augmented Separated Fair Expansion 

Augmented separated pair configurations 

The separated pair approximation which has been examined in Part I can 

be characterized by limiting the summation in Equation 2.14 to the single 

term 

*SP = Vsp> (2-26) 

where 

0Q = 2"V2[^(i)p(2)-p(i)a(2)][a(3)p(4)-p(3)a(4)] . . . [a(N-l)p(N)-p(N-l)a(N)] 

(2.27) 

belongs to the representation of and Fgp is the optimal 

product of separated gemlnals 

Fgp = n̂ +(l,2)02+0,4)...= Â (1,2)A2(3,4)...Aĵ (N-1,N) (2.28) 

belonging to the representation (+,+,+,...+) of with all gemlnals 

being strongly orthogonal 

J dVjA^*(l,2)A^(l,3) = 0 for M / V. (2.29) 

If such an antisymmetric product of separated gemlnals (APSG) is an 

effective approximation, then an obvious refinement is to choose it as 

the leading term in the expansion of Equation 2.14, i.e., to put 

~^SP' ̂00 ~ ̂ SP* (2.30) 
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The other terms can then be expected to occur with small coefficients 

and, under favorable conditions, may be treated by perturbation methods. 

In order to find appropriate expressions for these higher terms, it 

would appear natural to use once again the information furnished by the 

separated pair approximation. Suppose the separated geminals 

occurring in Fgp of Equation 2.30 have been expressed in terms of their 

natural orbitals = (iii) as has been elaborated in Part I, i.e., 

(2.31) 

= x «1|. (2.32) 

It is then proposed that an effective basis for expansion of the higher 

terms is obtained by forming the AP-SH-SG's of the type defined in 

Equation 2.19 with the help of those orthonormal geminals which are 

generated from the natural orbitals according to the definitions of 

Equations 2,21, 2.22 and 2.23 and the conventions discussed thereafter. 

These basis functions are then antisymmetrized products of spin harmonics 

and separated geminaIs generated from the natural orbitals of the sepa­

rated pair approximation. As shown before, they form an orthogonal set. 

Now the separated pair approximation itself is a linear combina­

tion of such functions; i.e., 

B-1 
^00 = ^SP ~ ' (2.33) 

V =0 
b-1 

too = a(»ofoo) = z b *%) (2.34) 
v=0 ̂  V 

where Gg,G^,...Gg ^ and bQ,b^,...bg ^ denote those products of geminals 

constructed from natural orbitals and associated products of occupation 
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coefficients, respectively, which appear in the expansion of F^Q. The 

AP-SH-SG's formed with all other geminal products are therefore orthogonal 

to f'QQ'i but those formed from GQ,G^,...Gg although orthonormal to 

each other, are not orthogonal to It is therefore advisable to 

define a set of B orthonormal linear combinations G^' of the geminal 

products G^, 

such that 

B-1 
C;' = Z GR , v=0,l,2,...B-l, (2.35) 

~ ̂ 00* (2.36) 

Then the B functions 

form an orthonormal set, and is the separated pair approximation. 

It appears that these functions together with the AP-SH-SG's 

formed from the other geminal products (i.e., those which are not identical 

to one of the G 's) form suitable orthonormal and complete basis sets F , 
V ak 

and ~ ' f^spectively, for the expansion of Vindicated by 

Equation 2.14. The basis functions constructed in this manner will 

be called the augmented separated pair configurations (ASPC's). The 

leading term will be called the separated pair configuration (SPC). 

It remains to define the orthogonal matrix R of Equation 2.35. The 

following two simple transformations are readily verified to accomplish 

the purpose. 
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Either 

or 

G ' 
V 

G ' 
v 

= =v • 1 

> for V > 1 

= G - tb./d-vkvo) j 

corresponding to the two matrices, respectively, 

R 
WV 

and 

M V 

i f  V  = 0 ,  

i f  ^  =  0 ,  V  >  1 ,  

i f  j i  >  1 ,  V  > 1 ,  

r b 
m 

®hv " 

if V =  0 ,  

i f  M  =  0 ,  V  >  1 ,  

i f  V  > 1, M  > 1. 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

Of course other orthogonal transformations which would achieve the same 

purpose exist. The two transformations given seem particularly appropriate 

if within the separated pair approximation the term (b^Gg) is dominant, as 

is in fact the case if the antisymmetrized product of the principal 

natural orbitals is a good approximation to the separated pair configura­

tion.; Furthermore, in order to minimize the difference between G and 
V  

6^', one will choose the set of Equations 2.38 if b^ Is positive and the 

set of Equations 2.39 if b^ is negative. Normally b^ is chosen to be 

positive. 
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Essential augmented separated pair configurations 

The formal construction of an elaborate set of complex N-electron 

basis functions, such as the one just proposed, is Justified if and only 

if it leads to a drastic reduction of the number of basis functions 

needed for an effective representation of the exact wavefunctlon. The 

crucial question is therefore how rapidly the expansion in terms of ASPC's 

converges. While physical intuition suggests the formulation of these 

basis functions and also supplies conjectures about which configurations 

are important, only experience in actual applications can reliably tell 

how many and which of the ASPC's are essential under various conditions. 

The selection criteria suggested in the following are extrapolations 

from the experiences gained with the beryllium-like systems, to be dis­

cussed in the subsequent sections. The conclusions appear reasonable 

enough to promise success in other systems. 

Let the geminal products generated from the natural orbltals ^ and 

W.vkf = [y(^j(l) W ;6vk), 

(Mj./ij)"" = 

(2.46) 

(2.47) 

Note that is the j-th natural orbital of the separated pair geminal 

A^. The corresponding antisymmetrized products of spin harmonics and 

separated geminals (AP-SH-SG's) are denoted by 

(mI.u'I';vj,v'j';Rr,R'r';a) 

=«A-C0^(Mi ,w'i';vj,v'j';...;Rr,R'r') (2.48) 
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where 

82 ^ 
= (Mi.M'i') (vj,v'j') '...(Rr,R'r') ̂  (2.49) 

is the gemlnal product belonging to that representation of which is 

conjugate to that of 0^. 

We shall now group all possible augmented separated pair configurations 

into classes: 

Class 0 consists only of the separated pair approximation (or separated 

pair configuration) #gp = Ygg. This function is a linear combination of 

all possible AP-SH-SG's of the type 

(li,li;2j,2j;...;Rr,Rr;0), (i,j,...R = 0,1,...) (2.50) 

denoted by G^ in Equations 2.33 and 2.34. 

Class 1. consists of B-1 ASPC's which are those linear combinations of 

the AP-SH-SG's 2.50 just quoted and are orthogonal to the separated pair 

function $gp (i.e., G^' for v / 0). They are given by Equations 2.37 and 

2.38 or 2.39. All members of this class have a = 0. 

Class 2 contains all other ASPC's which have the same distribution of 

electrons over the different geminals, i.e., all other AP-SH-SG's of the 

type 

(ll,li';2j,2j';...;vk,vk';...;Rr,Rr';a) (2.51) 

where vk ̂  vk' for at least one v. In this class various values of a 

are permitted. The class may be subdivided as follows: 
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Class 2a contains the AP-SH-SG's (a = 0) which in the original calcula­

tions of the separated pair approximation were eliminated by expressing 

each geminal in terms of its natural orbitals (transformation from "single 

excitations" to "double excitations"). 

Class 2b contains such AP-SH-SG's which must be excluded from because 

the symmetry condition does not permit them to be included in one anti-

symmetrized product of geminals, such as the AP-SH-SG (Kls,K2p;L2s,L2p;a) 

in beryllium. 

Class 3 contains all AP-SH-SG's of the type 

(li,li' ;... ;(v-l)j ,(v-l) j'îvm.un.; (v+l)k,(v+l)k' ;...;Rr,Rr' ;a) ; 

(2.52) 

i.e., in the vth geminal one orbital has been replaced by a natural 

orbital from another separated pair geminal (fi ^ \i). 

Class 4 contains all other AP-SH-SG's formed from the natural orbitals 

of the separated pair approximation. 

Based on the results of the beryllium-like systems the conjecture 

that substantial energy lowerings beyond the separated pair approximation 

result only from ASPC's in Classes 2b and 3 is very reasonable. 

Thus in beryllium from a total of about 300 possible ASPC's, only 

13 ASPC's from these two classes contributed 91 per cent of the total 

energy lowering beyond the separated pair approximation for beryllium, 

and 26 from these two classes contributed 98 per cent. 

Energy ana lysis of augmented separated pair expansion 

Let us return to a general notation and write 
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Z (2.53) 
n 

where shall represent the separated pair approximation, and for 

V > 0 shall represent higher ASPC's. If these latter are small enough 

corrections, first-order perturbation theory may be justified, and one 

obtains the coefficients 

'n = "on/WoO - «n.) C'S*) 

and the energy lowering 

^ = 2 ̂on' (2.55) 
n 

^On=VV(HoO-V 

which yields a decomposition according to ASPC's. 

A similar decomposition of the energy lowering can also be obtained 

if the coefficients are determined more accurately. Let 

E = E c.H c. (2.57) 
i.j ^ ^ 

be the energy for the coefficients determined from the secular equation 

L H^jCj = Ec^. (2.58) 

Then it is readily seen that the energy lowering (E - HQQ) can be 

written 

where 

^ = E-Hgg = z (2.59) 
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^1 (2.60) 
k(^i) 

= (E - Hoo)c^^ (2.61) 

is obtained by using Equation 2.58. If now « CQ for all i ̂  0, then 

the for i ^ 0 are third-order terras whereas AEQ is a first-order 
2 • S 

term; in beryllium, e.g., one finds (c^/cq) < lO" . Since (E - Hqq) is 

already small, one has 

AE «AEg = Z AEq^', (2.62) 

^Ok ^ ̂ 0%k°k' (2.63) 

which provides a useful decomposition of AE for analyzing the contribu­

tions of the various augmented separated pair configurations. 

If one desires to determine the coefficients more accurately than 

by first-order perturbation theory, then an iterative procedure for 

obtaining a specific eigenvalue is employed because very large matrices 

are usually encountered. The first-order perturbation results are 

excellent starting values for such a refinement. 

From the preceding analysis it follows that the energy lowering 

resulting from the ASPC's are due to intershell correlations in all cases 

except for those ASPC's which are already in an.APSG, i.e., G^', G^' 

G^', because the energy lowering results from energy integrals between 

natural orbitals characteristic of two different separated geminals. This 

can be seen from the following arguments. 

To qualify as an augmented separated pair configuration, the con­

figuration must differ from all separated pair configurations G^ of 
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Equation 2.33 by at least one orbital. Consider first the case where only 

one orbital is different. Suppose that the geminal is constructed 

from the two natural orbitals (li) and (vj) for v ^ 1, whereas all other 

SP 
geminals for b f I are products of natural orbitals such as occur 

in the construction of the separated pair approximation. Then the matrix 

element HQ^ is a linear combination of terms of the form 

op cp op op op 
...|H ...) and is resolved as follows: First, if 

SP 
P = e then Hq̂  (X (0^ , and only one space orbital is common to 

both geminals. The one-electron operator obviously connects orbitals 

characteristic of different geminals as do the two-electron operators. 

Second, if P is any other permutation obtained by permuting electrons 

SP SP 
between the geminals, then at least two orbitals in 0^ ... will not 

SP 
match two orbitals in ... ; and therefore, the two-electron operator 

will again connect orbitals characteristic of different geminals. This 

argument is easily generalized to the case in which more than two 

orbitals are different. Hence gives rise to intershell interactions 

only. 
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AUGMENTED SEPARATED PAIR EXPANSION FOR BERYLLIUM-LIKE SYSTEMS 

Construction of Wavefunctlon 

Space-spin functions 

For a four-electron system In a singlet state, there are two spin 

harmonics 

9q(1,2,3,4) = i[a(l)|3(2) - 3(l)a(2)][a(3)pW -  3(3)a(4)] (2.64) 

and 

0^(1,2,3,4) = {a(l)a(2)3(3)|3(4) + |3(l)p(2)a(3)a(4) 

- ^a(l)|3(2) + 3(l)a(2)][a(3)3(4) + p(3)a(4)]>//3. 

(2.65) 

The subgroup consists of the elements e, (12), (34) and (12)(34) and 

appears already In reduced form: 0^ belongs to the representation 

= (+,+); 8]^ belongs to the representation (f^,^^) = (-,-). The 

two representations are each other's conjugate. From an arbitrary space 

function F, It Is possible to construct FQ and F^ by the projections 

Fq = |'[e + (12)][e + (34)]F belonging to (+,+), (2.66) 

F^ = - (12)][e - (34)]F belonging to (-,-). (2.67) 

! 2 
The (4!/2 ) = 6 permutations occurring in the partial antisymmetrizer 

A, as well as their representation matrices, are; 

(13) and (24) (14) and (23) e and (13)(24) 

Too(f) Toi(f) 7 
1 0 

iio(P) -Ka i K3 4 0 1 
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Using these matrix elements in the General Equation 2.16 and using further 

the symmetry properties of the functions and with respect to the 

subgroup one obtains for the energy matrix elements the simplified 

expressions 

= (Foj - 2(13) + (13)(24)>|Fqj^), (2.69) 

= (F^j|H{e+ 2(13) + (13) (24)>|F^J^) , (2.70) 

= aJ3(Fij|H|(13)Fok). (2.71) _ 

The state 

The basic one-electron functions for atomic systems are natural atomic 

orbitale of the separated pair approximation 

(v/m) = f^(r)Y^^(0,5^) (2.72) 

where the radial functions are those of the natural orbitals. The label 

V is, therefore, a quite general characterization of f(r). The connection 

with the notation in Part I is established if one replaces v with (Kn) 

or (Ln), respectively. 

In the present context it is convenient to define, from these natural 

atomic orbitals, normalized "angular momentum geminals", i.e., two-electron 

functions which are eigenfunctions of the total spin of two electrons. 

They are 

fi. ^i+io4M 4/A A L\ 
= Z (-1) ̂  ^ (2L + l)lm^m^-M/,^(v^^^m^)(v^^^m^) 

,m-
(2.73) 

where Xm^m^M/ are the Wigner 3j symbols and >4 is one of the two symmetriza-
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tlon operators 

= {1 + (12) >//2 if y Vg or ^ (2.74) 

if = Vg and = ij. (2.75) 

^_ = -Cl - (12) >//2. (2.76) 

It is understood that in the product (^2^2™2^ the first factor 

depends on electron one and the second, on electron two. From these 

angular momentum geminals, a four-electron eigenfunction with zero eigen­

value can be formed as follows: 

where the first factor on the right depends on electrons one and two, and 

the second factor depends on electrons three and four. These functions 

form a basis for S-type space functions which moreover belong to the 

representations (^,^) = (+,+) or (-,-) of Zg respectively. 

In slight generalization of the method outlined in the general 

description of the augmented separated pair expansion given above, choose 

as basic expansion functions these linear combinations of angular momentum 

geminals, defined in Equation 2.77, and the corresponding space-spin 

wavefunctions 

(̂ 2 ̂  *̂ 2̂ 2 '̂ 3̂ 3 '̂ 4̂  ! Lid) = *̂ 3̂ 3*̂ 4̂ 4'̂  ̂ } 

(2.78) 
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where (£,,£,) is the representation conjugate to that of 0 . This is 
J- ^ a 

possible because those properties of the natural orbitals which were 

important in the general discussions are shared here by the orbital sets 

(vim), m = -£,-j^+l,.., +Ji. In particular, at most two of the four index 

pairs in Equation 2.78 can be identical, otherwise that expression 

vanishes. Furthermore, if two index pairs are identical, it is assumed 

that they are put in the same geminal, e.g., ( v^, v^g ; v^jg^, v^^^ ; L ; a,). As 

a consequence all angular momentum geminals occurring in the expression 

of Equation 2.77 are strongly orthogonal to each other; thus, all previous 

arguments based on this premise remain valid. Furthermore, the separated 

pair approximation itself is a linear combination of terms of this type. 

In fact, the separated pair approximation consists of the specific 

terms (Kn/,Kn/;Ln'/',Ln'^';0;0). The augmented separated pair configura­

tions ASPC's are obtained by applying to these specific terms the 

orthogonal transformation defined in Equations 2.37 and by further adding 

all other S-type wavefunctions defined by Equations 2.20-2,23. 

Determination of important configurations 

Since there are well over a thousand configurations which can be 

constructed from the natural orbitals of the separated pair approximation 

a systematic procedure for finding the substantial contributors to 

the energy lowering has to be followed. In this endeavor, two kinds of 

considerations are helpful. First, the results obtained for the wave-

function can be used with advantage when proceeding to the more 

complicated wavefunction Second, a good indication of the importance 

of a configuration is usually given by the second-order perturbation energy 
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as well as by the energy lowering of Equation 2.63. 

In the case of the augmented separated pair expansionall possible 

augmented separated pair configurations, 24 (in addition to the SPA and 

five configurations of Class 1) in all, including all possible inter­

mediate angular momentum couplings were investigated; i.e., the ASPC's 

(K2p,K2p;L2p,L2p;L;a) were constructed for the geminal angular momentum 

L = 0, 1,2 and a = 0 and 1. However, this ASPC was found to yield energy 

contributions of less than 10 ^ a.u. 

In view of this result, only those 86 (in addition to the SPA and 11 

configurations of Class 1) additional ASPC's were considered for which 

had geminal angular momentum L = 0. Henceforth the argument L will be 

omitted and every ASPC will be denoted by (Kn£,Kn'iJ' ;Ln£,Ln'/.';a). It 

was now further observed that all configurations which contribute more 

than 10 ̂  a.u. satisfy the following two criteria: (1) At least two 

of the four natural orbitale involved belong to the five most important 

no'S, viz., (Kls), (K2s), (K2p), (L2s) and (L2p). (11) It is possible 

to form a geminal with angular momentum L = 0 from two of these specific 

orbitals. 

For the augmented separated pair expansion finally, only those 

174 (in addition to the SPA and 49 configurations of Class 1) additional 

ASPC's which fulfilled the two conditions just mentioned were considered. 

Thus a total of 284 augmented separated pair configurations were examined. 

The Importance of each configuration was not only deduced from the 

2 
second-order perturbation energy HQ^ /^®00"^nn^' but it was further 

ascertained by examining the contribution ('^Q^On^n^ after determining the 
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lowest eigenvalues of 80 by 80 energy matrices. In this way, 35 augmented 

separated pair configurations which lowered the energy by more than lO"^ 

a.u. were identified. (Eleven more which gave contributions of slightly 

less than 10 ^ a.u. were omitted.) The 35 configurations together with 

the 50 configurations defined by Equation 2.37 were then included in 

a final calculation. The lowest eigenvalue of this 85 by 85 matrix was 

determined exactly, as well as by second-order perturbation theory; and 

it was found that, in this 85 dimensional function space, only 28 ASPC's 

-5 
gave contributions of 10 a.u. or more. 

The ASPC's of Class 0 and Class 1, i.e., GQ", G ^  , , . ,  g e n e r a t e  

intrageminal correlations and intergeminal interactions of the type 

discussed in the energy analysis given in Part I for the separated pair 

approximation. The energy lowerings resulting from the configurations 

of Class 1 defined by Equations 2.56 and 2.63 for the ASPE's and 

gave negligible contributions for all but two or three configurations 

of the ions lithium -1, carbon +2, nitrogen +3 and oxygen +4 for which 

cases they were less than 0.00007 a.u. In these cases the total contribu­

tions are about the same as the error of the calculation. On the other 

hand, if the total energy for and is calculated by omitting the 

ASPC's of Class 1, then it is found to be only about 0.00003 a.u. for 

and 0.0001 a.u. for above the energy calculated by including them. 

The lack of regularity in the data indicates that a more accurate calcula­

tion must be performed in order to determine precisely the importance of 

these configurations. Since the energy lowering from these ASPC's is 

nearly the same as the total error of the calculated total energy values, 

it may be concluded that the ASPC's of Class 1 are unimportant and that 
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the SPC is the only configuration necessary in the space spanned 

by Gq', Therefore the ASPC's of Class 1 are excluded from 

the following discussion even though the reported total energies do 

include them. 

Characteristics of contributing configurations 

The 28 contributing ASPC's are listed and enumerated in Figure 27. 

They are divided into three groups whose definitions correspond to the 

classification of ASPC's in the general discussion of augmented separated 

pair configurations. Each contributing ASPC is denoted by a number between 

1 and 28 to indicate its importance in lowering the energy of beyond 

that of ̂  for the beryllium atom, which will become evident from the 

discussion below in connection with Figure 34. In examining these aug­

mented separated pair configurations, the following observations appear 

to be pertinent. 

1. The contributing configurations lower the energy by virtue of 

intershell correlations as has been discussed above. This appears to 

indicate that the intrashell correlations have been adequately taken into 

account by the separated pair approximation. 

2. This inference is supported by considering the configurations in 

Class 2b, which are constructed from two K orbitals and two L orbitals. 

The contributing configurations are those which cannot be accommodated 

in the separated pair approximation because several APSG's of that type 

are required to construct a wavefunction with vanishing total angular 

momentum. In contrast, negligible contributions are found for all other 

configurations containing two K and two L orbitals, e.g., for those 
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(Class 2a) corresponding to "single excitations" between the natural 

orbitals of one geminal and also for those (Class 1) which correspond to 

the configurations G^' (v /= 0) generated by the transformation described 

in Equation 2.37. 

3. Everyone of the 28 contributing ASPC's contains at least two of 

the three orbitals (Kls), (L2s), (L2p), i.e., the principal and secondary 

natural orbitals. In fact, an ASPC containing more than two natural 

orbitals other than the principal and secondary ones is not expected to 

contribute substantially because it gives non-zero contributions to H» 
Un 

only by interacting with those configurations in the SPC which contain 

the weakly occupied natural orbitals and which therefore have as expan­

sion coefficients the product of two weak occupation coefficients 

(CriClj). Twenty-six ASPC's contain K orbitals as well as L orbitals. 

Of these, 22 contain a geminal generated by the two principal natural 

orbitals, i.e., the geminal (Kls,L2s); of the remaining four, three 

contain the geminal (K2p,L2p), and one contains the geminal (K2s,L2s). 

Two of the 28 ASPC's, Numbers 12 and 22, contain orbitals from one shell 

only; not surprisingly, these orbitals are the four major orbitals (Kls), 

(K2s), (L2s) and (L2p). 

4. By comparison with the configurations which do contribute, it 

is somewhat surprising that the ASPC's (Kls,Kls;K2p,K2p;0) and (Kls, 

Kls;K2s,L2s;0) give negligible energy lowerings. The lack of a substan­

tial contribution from the latter ASPC is very likely due to its being a 

"single excitation" in the sense to be discussed in Observation 5. 

5. Among all 28 contributing ASPC's there is no single excitation 

with respect to the antisymmetrized product of the principal natural 
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orbitals (Kl8,Kl8;L28,L28;0). The explanation clearly is that Brillouin's 

Theorem, which predicts vanishing second-order energy lowering for any 

single excitation from the Hartree-Fock antisymmetrized product, remains 

nearly true when the Hartree-Fock orbitals are replaced by the principal 

natural orbitals. Twenty-six ASPC's are two-electron excitations. The 

remaining two. Numbers 9 and 15, are three-electron excitations, but 

they involve the secondary natural orbital (L2p) twice. 

Quantitative Results 

Energy and expansion coefficients 

The results of the final calculations are listed in Figure 28. Also 

included are the results obtained by other investigators who have carried 

out rigorous calculations beyond a separated pair approximation. Calcula­

tions within the separated pair approximations were discussed in Part I. 

The result of Kelly (1963, 1964) was obtained by the application of 

Brueckner-Goldstone type many-body type perturbation theory. The exact 

deviation of this value from the actual expectation value of the energy, 

calculated explicitly from the wavefunction, is not known with certainty, 

since the generated wavefunction is so complex that it has not yet been 

written down. 

The Figure gives the energies calculated with and '3^, as 

well as the energy E(ASPE) obtained by means of the extrapolation procedure 

derived in Part I in order to correct for the K-shell defect in the 

separated pair approximation, i.e., 

E(ASPE) = E(ASPE + CQ^tE(SP) - E(APSG 
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The percentage of the correlation energy recovered by the augmented 

separated pair expansion is approximately constant, about 94 per cent for 

"5^ and 96 per cent for ASPE. The absolute error ranges from 3 to 5 kcal 

which is near chemical accuracy. The ASPE's "5^, and obey the 

v i r i a l  t h e o r e m  a b o u t  a s  w e l l  a s  t h e  c o r r e s p o n d i n g  A P S G ' s  ̂ a n d  

For beryllium one finds for the scale factors t) = (-j Potential Energy/ 

Kinetic Energy) the values 

TI(ASPE = 0.9993494 

T](ASPE = 1.0003817 

ti(ASPE = 1.0005003. 

It is therefore likely that a variation of the orbital exponents in the 

augmented separated pair expansion would not substantially improve the 

energy. 

The coefficients of the various ASPC's in each of the ASPE's deter­

mined are given in Figures 29, 30 and 31. With the data given for the 

corresponding APSG's, these coefficients permit the calculation of any 

expectation value. 

Intergeminal correlations 

The energy lowerings for the ASPE's and can be parti­

tioned according to the scheme discussed in connection with Equation 

2.62. This analysis is exhibited in Figures 32, 33 and 34. The order 

of listing, as well as the corresponding numbering of the ASPC's, is 

based upon the relative importance of the energy lowerings obtained with 

the wavefunction for the beryllium atom. 

The contributions listed (except for the separated pair approxima­
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tions are the quantities According to Equation 2.62 their 

sum AE(ASPC) should be nearly equal to the energy lowering [E(ASPE •^) -

E(APSG $^)]. The very close agreement between the two numbers, which is 

evident from the figure, is due to the smallness of the neglected terms 

AEj^ for k ̂  0 of Equation 2,61. An explicit examination shows indeed 

that, in Equation 2.61, one has to substitute < 10 ̂  and [Hqq -

E(ASPE '^) ] < 1.3 X 10 ^ a.u. Explicit calculations using Equation 2.60 

gave slightly larger results presumably due to truncation errors. 

By comparing the values in Figures 32, 33 and 34, one recognizes 

that the energy contribution of each ASPC is approximately the same for 

and In general the contribution of a given ASPC improves by 

going to a better ASPE. This fact is analyzed in Figure 35, where the 

energy lowering of each ASPE is decomposed according to contributions 

characteristic of (i) those ASPC's which are in(ii) those ASPC's 

which are in but not in ; (iii) those ASPC's which are in but not 

in It is seen that, e.g., for the refinement of the ASPC's 

occurring already in "î^ furnishes an energy lowering which is not 

negligible in comparison with that arising from the new configurations 

introduced by 

The lowering of the energy calculated with the ASPE beyond that 

calculated with the separated pair approximation qualifies entirely 

as intergeminal correlations, as has been discussed above. In the case 

of beryllium, the best wavefunction yields an intershell correlation 

energy of -0.00414 a.u. which is in noteworthy agreement with the value 

of -0.00497 a.u. obtained by Kelly (1963). A rough estimate of -0.00648 

a.u. has been given by Tuan and Sinanoglu (1964). The dependence of the 
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intergeminal correlations upon the nuclear charges is plotted in Graph 3. 

Remarkable is the nearly linear dependence upon Z ^ for large Z. It 

appears to imply that, in the Schroedinger perturbation expansion of the 

total energy in terms of Z the intershell correlations do not contribute 

2 
to the terms in Z and Z . 

Rather surprising is the result that the energy contribution for 

Configuration 19 is positive for several systems (in the others it 

vanishes). There is no reason why all contributions have to be negative; 

only the total energy lowering must be negative. An examination of the 

expansion coefficients c and the matrix elements shows them to be 
n Un 

positive or negative to various orders of magnitude, and a closer invest­

igation reveals that the energy contribution AE^ for n ̂  0 is negligible 

2 
because the promotion energy c^ - Hqq) is balanced partly by 

^O^n^On partly by several additional terms which are compar­

able in magnitude to c^c H- . This is in contrast to the situation in 
u n un 

the analysis of the geminal energy in the separated pair approximation 

(Part I) where the intrageminal energy contributions of the type (CgC^Hg^), 

involving the principal NO's and one other NO, were always negative and 

much more important than other terms in balancing the positive promotion 

energy. Here the appearance of the additional terms does not 

permit one to show that the expansion coefficients c^ are always opposite 

In sign to and the fact that a particular configuration contributes 

to lowering the energy is more complicated to explain than the energy 

lowering which in the separated pair approximation is obtained from a 

particular NO. In the augmented separated pair expansion a configuration 
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can help in the energy lowering either by contributing to the annihila­

tion of AE^ or by contributing to the energy lowering ZhEg = Z5E(ASPC); 

and under certain conditions, a particular configuration may participate 

more in the annihilation of than in the energy lowering AEq. Thus 

^O^n^On actually be positive and thereby permit some other ASPC to 

be more effective. This subtle interplay of ASPC's appears to be rather 

complicated. 

Perturbation theory 

In order to assess the validity and usefulness of perturbation theory, 

a detailed quantitative comparison is given in Figure 36 for the ASPE 

for the beryllium atom. Listed are the coefficients of all ASPC's as 

predicted by first-order perturbation theory and the corresponding energy 

contributions as predicted by second-order perturbation theory. Also 

given in this Figure are the deviations of these approximate coefficients 

from the exact coefficients and the deviations of these approximate energy 

contributions from the "exact" contributions, which were given in Figure 

33. 

By and large the perturbation energy contributions are rather close 

approximations. But this is not the case for the Configuration 19 since 

it is clearly impossible to recover its positive contribution from 

perturbation theory. But also for the other ASPC's, the contributions 

to the energy lowering are generally seen to be overestimated by the 

perturbation results. This conclusion is confirmed by the results 

included in Figure 35. There the total energy lowerings predicted from 
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the second-order perturbation energy are also given and compared with the 

exact results for all ASPE's of all systems. The difference is very 

small for , but it is considerable for and '3^. The largest over-

-3 
estimate is 10 a.u. and hence is significant in the present context. 

It may also be noted that a higher total energy is obtained if to 

calculate the energy expectation value in a rigorous fashion one uses 

the normalized wavefunction constructed from the coefficients 

obtained by first-order perturbation theory. One finds for beryllium: 

= E(ASPG $3) - 0.00313 a.u. 

= E(ASPG ̂ 3) - 0.00342 a.u. 

Second-order perturbation energy = E(ASPG 4^) - 0.00371 a.u. 

In conclusion, it appears that perturbation theory is useful for 

finding a starting point in an iteration procedure to determine the 

exact eigen solution of the matrix problem but that the decomposition 

given in Equation 2.63 is more accurate and hence preferable for an 

analysis of the actual energy. 
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Effect on energy of using maximum number of natural orbitale in 
separated pair approximations to the beryllium atom wavefunction 

APSG^ Basis set^ Energy 

*2 -14.64809 

"3 -14.65292 

*3 "3 -14.65515 

^ In *2* contains three natural orbitale and contains two 
natural orbitale. In $3, Apç contains eix natural orbitale and containe 
two natural orbitale. ^2 $3 are defined in Figure 4. 

^bg = (leK, 2eK, 2pK, 2eL, 2pL) and bj = bg + (3eK, 3pK, 3dK). 

Figure 1. Effect on energy of using maximum number of natural orbltals 
In separated pair approximations to the beryllium atom 
wavefunction 
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Effect on energy of optimizing the transformation matrix T®- in separated pair approximations to the 
beryllium atom wavefunction 

Natural orbitals in Energy calculated with 

K-geminal L-geminal T = unit matrix Best T 
Energy 

• improvement 

Kls, K2s Li2s -14,56832 -14.58433 
i 

-0.01601 

Kls, K2s, K3s L2s -14.56875 -14.58703 -0.01828 

Kls. K2s L2s, L2p -14.61144 -14.62727 -0.01583 

Kls. K2s, K2p L,2s, L2p -14.63269 -14.64809 -0.01540 

Kls, K2s, K2p L2s, L2p, Li3d -14.63306 -14.64848 -0.01542 

. is the orthogonal transformation which generates the natural orbitals from a basis of 
Schmidt orthogonalized Slater-type atomic orbitals. In all cases, orbital exponents and occupation 
coefficients are optimized. 

Figure 2, Effect on energy of optimizing the transformation matrix T in separated pair approximations 
to the beryllium atom wavefunction 
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Energy lowering due to addition of various natural orbitals to separated pair approximations of the beryllium 
atom wavefunction*' 

Energy NO's in K-geminal NO's in L-gemin«l 
lowering KZs K3s K4s K2p K3p K4p K3d K4d K4f L3s L2p L3p L3d 

Maximum 0.02760 0.00270 0.00044 0.02278 0.00208 0.00260 0.00060 0.00068 0.04319 0.00008 0.00056 

Minimum 0.02735 0.00254 0.00035 0.02035 0.00207 0.00257 0.00060 0.00060 0.04144 0.00007 0.00037 

Weighted 
average 0.0274 0.0026 0.0004 0.0214 0.0021 0.0002^ 0.0025 0.0003'' 0.0006 0.0006 0.0423 0.0001 0.0004 

Number of 
cases 
calculated 

4 3 2 8 2 7 3 2 9 2 7 

*The difference between the optimal energies calculated from separated pair approximations including and not 
including the indicated NO is given. For each NO there exists a corresponding orthogonalized STAG. 

b 

vo 
VO 

Average was estimated from the trend of data. 

Figure 3. Energy lowering due to addition of various natural orbitals to separated pair approxima­
tions of the beryllium atom wavefunction 
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Natural orbitals used with each geminal for various separated pair approximations in this 
investigation 

APSG NO'S in K-geminal NO's in L-geminal Accuracy 
of energy 

Kls IJZS 0.1 

Kls, K2s, K2p L2s, L2p 0.01 

Kls, K2s, K3s, K2p, K3p, K3d Li2s, Li2p 0.001 

«4 Kls, K2s, K3s, K4s, K2p, K3p, K4p, K3d, K4d. K4f L2s, L3s, L2p, LSp, L3d 0.0001 

Figure 4. Natural orbitals used with each geminal for various separated pair approximations in this 
investigation 
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Orbital exponent* of Slater-type atomic orbitale uied In varloui separated 
pair approximations to the beryllium-like atomic wavefunctions 

STAC Li" Be B+ c+2 0+^ F+5 Ne+^ 

Separated pair approximation 

IsK Z.688 3.685 4.675 5.665 6.654 7.641 8.624 9.616 
ZsL 0.485 0.955 1.397 1.829 2. 259 Z.688 3.114 3.542 

Separated pair approximation $2 

IbK , 2.473 3.405 4.317 5.229 6.141 7.045 7, 941 8.865 
ZsK 3.196 4.Z9Z 5.292 6.256 7.228 8,13Z 9.096 10.026 
2pK 3.965 5.485 6.965 8. 509 10.001 11.693 13.180 14.790 
ZsL 0.509 0.993 1.457 1.923 2.383 Z. 851 3.315 3. 777 
2pL 0.492 0.978 1.454 1.932 2.414 Z. 894 3.400 3. 880 

Separated pair approximation *3 

IsK 2.496 3.417 4.340 5.271 6.188 7.1Z7 8.060 8. 991 
ZsK 3.181 4.222 5.Z47 6.156 7.125 8. 090 8.939 9. 772 
3sK 3.719 5.068 6.293 7.302 8.387 9.380 10.409 11.398 
ZpK 4.156 5.565 7.090 8.699 10.304 11.981 13.626 15.135 
3pK 4. 780 6.270 7.880 9.598 11.464 13.178 14.796 16.614 
3dK 5.644 7. 730 9.816 11.768 13.752 15.804 17.656 19.608 
ZsL 0.510 0.997 1.472 1.943 2.414 Z. 885 3.366 3. 829 
ZpL 0.491 0. 984 1.465 1.948 Z.4Z9 2.922 3.397 3. 890 

Separated pair approximation O4 

IsK 2.496 3. 417 4.340 5. 271 6.188 7.127 8.060 8. 991 

28K 3.181 . 4. 222 5.247 6. 156 7.125 8.090 8. 939 9.772 
3sK 3.719 5, 068 6.293 7.30Z 8.387 9.380 10.409 11.398 
4sK 4.655 5. 955 7.155 8. Z55 9. 355 10.455 11.555 12.655 

2pK 4.156 5. 565 7.090 8.699 10.304 11.981 13.626 15.135 

3pK 4.780 6. 270 7. 880 9.598 11.464 13. 178 14.796 16.614 

4pK 5.400 7. 000 8.600 10.300 12.100 13.900 15.700 17. 500 
3dK 5.644 7. 730 9.816 11.768 13.752 15. 804 17.656 19.608 
4dK 6.330 8. 330 10.330 1Z.330 14.330 16.330 18.330 20.330 

4fK 8.130 10. 530 12.930 15.330 17.730 20.130 22.530 24. 930 

2.L 0.510 0. 997 1.472 1.943 2.414 2. 885 3.366 3. 829 
3sL 0, 510 1. 000 1.480 1.950 2.420 2.890 3.370 3.840 

2pL 0.491 0. 984 1.465 1.948 2.4Z9 2.92Z 3.397 3..890 

3pL • 0.510 1. 000 1.480 1.960 '• Z.440 Z. 930 3.420 3.900 

3dL 0. 726 1. 216 1.696 2.176 Z.656 3. 136 3.616 4.096 

Figure 5. Orbital exponents of Slater-type atomic orbitale used in various 
separated pair approximations to the beryllium-like atomic 
wavefunctions 
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Polynomial approximations to orbital exponents 

STAO ^1 °2 A 

Separated pair approximation 

IsK -0.29572 0.99715 -0.00063 0.001 

2sL -0.88578 0.46809 -0.00259 0.006 

Separated pair approximation *2 

, IsK -0.29441 0. 92854 -0.00135 0.005 

2sK 0.39698 0.96812 0.04 

2pK -0.73030 1.54674 • 0.05 

2sLi -0.90759 0.47670 -0.00084 0.003 

2pL -0.96360 0.48370 0.007 

Separated pair approximation 

IsK -0.25437 0.91337 0.00113 0.002 

2sK 0.46138 0.94310 0.06 

3sK 0.71800 1.08100 0.1 

2pK -0.75590 1.58852 0.07 

3pK -0.51062 1.70510 0.08 

3dK -0.22559 1.99198 0.06 

2sL, -0.92826 0.48295 -0.00071 0.003 

2pL -0.95943 0.48464 0.003 

^ Listed are the coefficients of the approximation Cq + c^Z + c^Z^. 
It yields the ST AO exponents reported in Figure 5 with a mean absolute 
deviation A. 

Figure 6. Polynomial approximations to orbital exponents 
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Scale factors for various separated pair approximations to beryllium-like atomic wavefunctions^ 

APSG Li" Be B+ C+2 o+  ̂ F+5 

*1 
1.0002789 0.9999542 1.0001841 1.0000951 0.9999204 0.9998759 1.0002927 0.9996968 

*2 0.9977483 0.9991997 0.9996603 0.9994723 0.9996715 0.9995272 0.9995502 0. 9996604 

*3 0.9997857 1.0001876 1.0000937 0.9999798 1.000113 5 0.9999441 0.9999396 1.0001216 

«4 0.9997825 1.0002778 1.0000298 0.9999759 0.9999934 0.9999065 0.9999153 1.0002060 

^ Listed are the values of ÎJ = ( -J Potential Energy)/(Kinetic Energy). 

Figure 7. Scale factors for various separated pair approximations to beryllium-like atomic wave-
functions 



www.manaraa.com

104 

Expansion coefficients of natural orbitale of separated pair approximation 
4>2 in terms of Schmidt orthogonalized Slater-type atomic orbitale 

Kls 

(IsKjJ 0.99814950 
(2aI-uJ -0.01837111 
(2sK^ -0.05796554 
(2pLJ 0.00000000 
(ZpKjL) 0.00000000 

Lithium -1 

L28 K2a L2p K2p 

0.01648357 0.05792978 0.00000000 O.OOOOOOOO 
0.99982812 -0.00247343 0.00000000 0.00000000 
0.00140462 0.99831755 0.00000000 0.00000000 
0.00000000 0.00000000 0.99999684 -0.00250167 
0.00000000 0.00000000 0.00250167 0.99999684 

Kls 

l l a K A  0.99794835 
(28L ) -0.0354942? 
{2sK )-0.05328358 
(2pLJ O.OOOOOOOO 
(2pKj_) 0.00000000 

Beryllium 

L2s K2s 

0.03532755 
0.99936748 
-0.00406706 
0.00000000 
0.00000000 

0.05339424 
0.00217634 
0.99857110 
0.00000000 
0.00000000 

L2p 

0.00000000 
0.00000000 
O.OOOOOOOO 
0.99999698 
0.00244981 

K2p 

0.00000000 
0.00000000 
0.00000000 
•0.00244981 
0.99999698 

Kls 

(IsKjJ 0.99754154 
(ZsLJ -0.04461200 
(2sKJ -0.05404l9j!> 
(2pL_J 0.00000000 
(2pK_J 0.00000000 

Boron +1 

L28 K2S 
0.04417723 
0.99898116 
•0.00921363 
0.00000000 
n.nnnooooo 

0.05439794 
0.00680355 
0.99849610 
0.00000000 
0.00000000 

L2p 

0.00000000 
0.00000000 
0.00000000 
0.99999644 
0.00266136 

K2p 

0.00000000 
0.00000000 
C.00000000 
-0.00266136 
0.99999644 

Carbon +2 

Kls L2s 

(IsKjj 0.99727273 0.04881247 
(2sLj.) -0.04951430 0.99870854 
(2sKj.) -0.05472998 -0.01408766 
(2pL^) 0.00000000 0.00000000 
{2pKjj 0.00000000 0.00000000 

K28 

0.05535684 
0.01137774 
0.99840176 
0.00000000 
0.00000000 

L2p K2p 

0.00000000 0.00000000 
0.00000000 0.00000000 
0.00000000 0.00000000 
0.99999542 -0.00302176 
0.00302176 0.99999542 

Kls 

Nitrogen +3 

L2s K2b 

(IsKjJ 0.99713153 0.05106280 0.05586751 
{2sLjJ -0.05196794 0.99853797 0.01486954 
(2SKX) -0.05502656 -0.01773021 0.99832741 
(2pLuJ 0.00000000 0.00000000 0.00000000 
(2pKj.) 0.00000000 Oc 00000000 0.00000000 

L2p K2p 

0.00000000 0.00000000 
0.00000000 0.00000000 
0.00000000 0.00000000 
0.99999510 -0.00312513 
0.00312513 0.99999510 

Figure 8. Expansion coefficients of natural orbitals of separated pair 
approximation in terms of Schmidt orthogonalized Slater-

type atomic orbitals 
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Oxygen +4 

Kls L2B 

(laKJ 0.99693677 0.05313865 
(2aLJ -0.05427259 0.99835684 
(2sKJ -0.05631553 -0.02144248 
(ZpLj) • 0.00000000 0.00000000 
(2pKj.) U.00000000 0.00000000 

K28 
0.05730673 
0.01838427 
0.99818269 
0.00000000 
0.00000000 

L2p KZp 

O.OOOCOOOO 0.00000000 
O.OOOCOOOO 0.00000000 
0.00000000 o.oocooooo 
0.99999377 -C.00352238 
0.00352238 C.99999377 

(IsKj.) 
(2s  W 
(2sKj.) 
(2pW 
(2pKj.) 

Kla 

0.99675133 
-0.05646151 
•0.05743501 
0.00000000 
0.00000000 

Fluorine +5 

L2s K2s 

0.05517358 
0.99819376 
•0.02376930 
0.00000000 
0.00000000 

0.05867332 
0.02052318 
0.99806619 
0.00000000 
0.00000000 

L2p 

O.OOOCOOOO 
0.00000000 
O.OOOCOOOO 
0.99999570 
0.00292663 

K2p 

O.OOOCOOOO 
0.00000000 
C.00000000 
-0.00292663 
C.99999570 

(IsKj.) 
(2 s W 
(2sKj.) 
(2pW 
(2pKj.) 

Kls 
0.99680759 
-0.05619253 
-0.05671778 
0.00000000 
0.00000000 

Neon +6 

L28 K2S 

0.05476245 
0.99814865 
-0.02646211 
0.00000000 
0.00000000 

0.05809975 
0.02327163 
0.99803946 
0.00000000 
0.00000000 

L2p 

0.00000000 
0.00000000 
0.00000000 
0.99999462 
0.00327210 

K2p 

0.00000000 
O.OOCOOOOO 
C.00000000 
-0.00327210 
C.99999462 

Figure 8. (Continued) 
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Expansion coefficients of natural orbitals of separated pair approximation in terms of Schmidt 
ortnogonalized Slater-type atomic orbitals ̂  

(IsK^ 
(2s W 
(ZSKJL) 
(3sKjJ 

Kls 

0.99870330 
0.01744660 
-0.04740007 
0.00634866 

L2s 

0.01745286 
0.99984698 
-0.00042255 
-0.00099735 

K28 

Lithium -1 

K3s 

0.04520518 -0.01559951 (2pW 
-0.00017745 0.00116636 (2pKjj 
0.97908905 -0.19783172 (3pKjJ 
0.19834517 0.98011101 

L2p 

0.99999761 
0.00210828 
-0.00038781 

K2p K3p 

-0.00205552 O.OC060834 
0.99440330 -0.1C562854 
0.10562959 0.99440535 

(laKJ 
(23 LJ 
(2sK^ 
(SsKJ 

Kls 

0.99816009 
-0.03548461 
-0.04903651 
0.00353619 

KZs 

Beryllium 

K3s L2s 

0.03508195 0.04840272 -0.01013286 (2pLJ 
0.99933686 0.00788415 0.00207058 (2pKjJ 
-0.00926455 0.98940685 -0.13632082 (3pKjJ 
-0.00300489 0.13663380 0.99061062 

L2p 

0.99999626 
-0.00059842 
-0.00264600 

K2p K3p 

0.00082965 0.0C258285 
0.99609618 -0.08827151 
0.08826964 0.99609303 

Kla L2a 

(laK_J 0.99784586 0.04273654 
(2sLJ -0.04354084 0.99892276 
(ZsKjJ -0.04900035 -0.01755764 
(38KJ 0.00254304 -0.00427703 

K2s 

Boron +1 

K38 

0.04913384 -0.00792208 (2pLJ 
0.01582054 0.00262332 (2pKjJ 
0.99233398 -0.11208723 (3pKx) 
0.11228728 0.99366317 

L2p 

0.99999152 
-0.00192407 
-0.00362284 

K2p 

0.00*24091 

K3p 

0.00343589 
0.99597629 -0.08959520 
0.08958783 0.99597224 

Kla Li2a K2s 

Carbon +Z 

K3a 

( IsK j )  0.99775195 0.04541664 
(23 LJ -0.04656262 0.99864341 
(ZsKjJ -0.04810276 -0.02494673 
(3sKjJ 0.00296339 -0.00509423 

0.04883549 -0.00656947 (2pLJ 
0.02304582 0.00343141 (ZpKjJ 
0.99546609 -0.07817077 (SpKjJ 
0.07829987 0.99691225 

L2p 

0.99999087 
-0.00199993 
-0.00375432 

K2p K3p 

0.00237185 0.00353114 
0.99479892 -0.10183746 
0.10182947 0.99479468 

Figure 9. Expansion coefficients of natural orbitals of separated pair approximation ̂  in terms 
of Schmidt orthogonalized Slater-type atomic orbitals 



www.manaraa.com

Kl, L28 K28 

Nitrogen +3 

K38 

(1SKj3 0.99759595 0.04771866 
(2sLj) -0.04915484 0.99837917 
(2sKJ -0.04877487 -0.03046626 
(3sKJ 0.00256506 -0.00575924 

0.04996208 -0.00533704 (2pW 
0.02837190 0.00415579 (ZpK^j 
0.99648820 -0.06085592 (3pKjJ 
0.06090525 0.-9.9812330 

L2p 

0.99999334 
-0.00139778 
-0.00332226 

K2p K3p 

0.00174989 0.00315105 
0.99409862 -0.10846915 
0.1C846404 0.99409461 

(IsKJ 
(2s W 
(2sK_J 
(3sKj) 

Kl, 

0.99766687 
-0.04925040 
-0.04725493 
0.00251723 

L28 

0.04759494 
0.99823608 
-0.03492667 
-0.00625645 

K2, 

Oxygen +4 

K38 

0.04877385 -0.00404587 (2pLJ 
0.03281280 0.00514232 (2pKJ 
0.99756571 -0.03754221 (3pK_J 
0.03750667 0.99927346 

L2p 

0.99999357 
-0.00134404 
-0.00329721 

K2p K3p 

0.00172051 0.00311735 
0.99313305 -0.11698131 
0.11697638 0.99312913 

(IsKo) 
(2s LJ 
(2sK_J 
(3sKJ 

Kls 

0.99768998 
0.04941776 
-0.04651130 
0.00297068 

L2« 

0.04756170 
0.99802243 
-0.04058018 
-0.00647305 

K28 

Fluorine +5 

K38 

0.04835646 -0.00371188 (2pLJ 
0.03841030 0.00577060 (2pKJ 
0.99785260 -0.02189968 (3pKjJ 
0.02181625 0.99973638 

L2p 

0.99999526 
-0.00065860 
-0.00296381 

K2p K3p 

0.00101818 0.00286028 
0.99240493 -0.12301085 
0.12300843 0.99240105 

(IsKJ 
(2s LJ 
(ZsKJ 
( 3 s K J  

Kl, 

0.99769781 
-0.04924973 
-0.04650140 
0.00325789 

L2, 

0.04725102 
0.99791485 
-0.04353935 
-0.00609126 

K2, 

Neon +6 

K3, 

0.04861207 -0.00165475 (ZpLj) 
0.04105998 0.00734704 (2pKjJ 
0.99761007 0.02674877 (SpKjJ 
-0.02691647 0.99961357 

L2p 

0.99999658 
-0.00007947 
-C.00255713 

K2p K3p 

0.00034928 0.00253441 
0.99439930 -0.1C568648 
0.10568598 0.99439607 

^ The expansion coefficient for the (K3d) NO is unity because this NO is identical to the (3dK) ST AO, 

Figure 9. (Continued) 
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Expansion coefficients of natural orbitals of separated pair approximation in terms 
of Schmidt orthogonallsed Slater^type atomic orbitale * 

(IsKJ 0. 
(ZaIuJ —0, 
(ZsKjJ'—o< 
(3SKJ.) 0. 
(38lu.) -0. 
(48Ki) 0, 

Kls 

99868747 
01815460 
04746837 
00632001 
00043021 
00008130 

L2a 

0.01815963 
0.99983281 

•0.00047089 
-0.00100033 
0.00028182 

•0.00170388 

Lithium -1 

K28 

0.04524306 
-0.00020586 
0.97843745 
0.19747332 

-0.02735892 
-0.02947024 

K3s 

-0.01508291 
0.00123700 

-0.18958551 
0.97087347 
0.12846355 
0.06877248 

L3s 

0.00360403 
-0.00047659 

0.05105886 
-0.11963578 

0.99127127 
-0.02117140 

K48 

0.00240394 
0.00160871 
0.04308762 

-0.06367776 
0.01138056 
0.99697073 

(2pW 
(2pKi) 
(BpKi.) 
(3pW 
(4pKj.) 

L2p 

0.99999703 
0.00202762 

-0.00040902 
0.00116141 

>0.00022585 

K2p 

-0.00197086 
0.99439820 
0.10525131 

-0.00373388 
-0.00872646 

K3p 

0.00062365 
-0.10290515 
0.98452034 
0.01680041 
0.14088003 

L3p 

-0.00116850 
0.00702968 

•0.02563381 
0.99750944 
0.06532201 

K4p 

0.00019955 
0.02299597 

-0.13778313 
-0.06839075 

0.98783074 

(3dKi) 
(3dW 
(4dKx) 

K3d 

0.99622647 
•0.02146891 
0.08409448 

L3d 

b.02235009 
0.99970456 

-0.00955102 

K4d 

-0.08386458 
0.01139450 
0.99641199 

Kls 

(IsKx) 0.99811865 
(28LJ -0.03673012 
(28KjJ -0.04896734 
(3BKjJ 0.00337069 
(SaltiJ 0.00069050 
(4BKJJ -0.00009553 

L2B 

0.03632011 
0.99928539 

-0.00949263 
-0.00320605 
•0.00288732 
-0.00063291 

Beryllium 

K28 

0.04951845 
0.00803999 
0.99131275 
0.11998079 
0.00524373 

-0.02137324 

K38 

-0.00858806 
0.00273933 

-0.11049541 
0.95749478 
0.08478526 
0.25243633 

L3s 

0.00012720 
0.00265130 
0.00770395 

-0.09918217 
0.99398579 
0.04569943 

K4e 

0.00343317 
-0.00001229 

0.05041709 
-0.24279408 
-0.06904416 

0.96629704 

L2p 

(2pLa) 0.99996379 
(ZpKiJi -0.00088307 
(3pKjJ -0.00378763 
(3pLaJi-0.00304918 

K2p K3p L3p K4p 

0.00114323 0.00407688 
0.99683805 -0.07321494 
0.07677167 
0.00351373 

(4pKj.)-0.00191387 -0.02014658 0.14278661 

0.00300590 0.00105970 
0.00312590 0.03069934 

0.98606371 -0.05884377 -0.13530383 
0.04373666 0.99284996 -0.11096940 

0.10376586 0.98409088 

L3d K4d 

Figure 10. 

K3d 

(3dK^ 0.99211734 0.03833239 -0.11930490 
(BdLji) -0.03586733 0.99909769 0.02274175 
(4dIO) 0.12006902 -0.01828334 0.99259711 

Expansion coefficients of natural orbitals of separated pair 
approximation in terms of Schmidt orthogonallzed Slater-

type atomic orbitals 
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Kl# 

(IsKj.) 0.997809 74 
(Zahj -0.04433668 
(ZsKo.) -0.04900574 
(SsKj.) 0.00254424 
(3sLj.) 0.00123369 
(4sKJ -0.00012543 

L2, 

0.04352568 
0.99888572 

-0.01770208 
-0.00430881 
0.00024871 

-0.00064198 

Boron +1 

K2, 

0.04907625 
0.01590199 
0.99144968 
0.11447684 
0.02121719 
•0.02846537 

K3, 

-0.00766143 
0.00271876 
-0.10646846 
0.96237775 
0.10344843 
0.22743223 

L3, 

-0.00119863 
-0.00077301 
-0.00525690 
-0*12186676 
0.99055351 
0.06262931 

K4a 

0.00346694 
0.00053373 
0.05430328 

-0.21411934 
-0.08746590 
0.97136058 

(2pLjJ 
(2pKa) 
OpKj.) 
(3pLx) 
(4pKjj 

L2p 

0.99998988 
-0.00209045 
-0.00366331 
0.00022502 
-0.00148183 

(3dKl.) 
(SdLuj 
(4dK4.) 

K2p K3p 

0.00236877 0.00357579 
0.99593195 -0.08514148 
0.08724113 0.98905417 
0.00810878 0.06920097 
•n.02090064 0.09859456 

K3d L3d 

0.99239422 0.05694356 
-0.05638967 0.99805600 
0.10942530 -0.02024413 

L3p 

-0.00030436 
0.00237205 
-0.08342256 
0.98558576 
0.14715828 

K4d 

-0.10807100 
0.02654008 
0.99378883 

K4p 

0.00124350 
0.02932825 

-0.08478064 
-0.15416232 
0.98396363 

(IBKJJ 0. 
(ZsLoJ -0, 
(ZsKjJ -0. 
(SsKjJ 0. 
(3 s La) 0, 
(48KjJ -0. 

Kls 

99772502 
04714776 
04808171 
00297654 
00085577 
00013517 

LZs 

0.04598949 
0.99860958 
•0.02522155 
-0.00516831 
•0.00007779 
•0.00071639 

Carbon +2 

K2a 

0.04868147 
0.02323366 
0.99331670 
0.07974625 
0.04938895 
-0.04016176 

K38 

-0.00646204 
0.00354859 

-0.07587923 
0.96920882 
0.12621652 
0.19720835 

L3s 

-0.00209613 
-0.00138736 
-0.03390987 
-0.14690148 
0.98547181 
0.07815982 

K4s 

0.00364716 
0.00107613 
0.05887167 
-0.18071702 
-0.10234545 
0.97641505 

L2p 

(2pLjj 0.99998917 
(ZpKjJ -0.00210987 
OpKjl) -0.0C377996 
(3pLJ 0.00059557 
(4pKJ -0.00152104 

(3dKjj 
OdLuJ 
(4dKj 

K2p 

0.00243459 
0.99489348 
0.09839782 
0.00833008 
-0.02071636 

K3d 

0.99359543 
-0.06554230 
0.09204499 

K3p 

0.00365101 
-0.09587046 
0.98636298 
0.07432285 
0.11117268 

L3d 

0.06807923 
0.99737422 
-0.02469452 

L3p K4p 

-0.00066689 0.00130616 
0.00447947 0.03116018 
-0.09261369 -0.09368291 
0.98112965 -0.17830001 
0.16966648 0.97899047 

K4d 

-0.09016477 
0.03080271 
0.99544897 

Figure 10. (Continued) 
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(IsKi.) 0< 
(2SLIJL)-0. 
(2aKx) -0. 
OsKi.) 0. 
(38 lu.)  0,  
(48Kj.) -0, 

Kls 

99753608 
05035834 
04876001 
00256550 
00098666 
00017121 

LZm 

0.04891778 
0.99831716 
-0.03058065 
-0.00577637 
•0.00009556 
•0.00077999 

Nitrogen +3 

K28 K3a 

0.04976873 
0.02832789 
0.99356264 
0.06266867 
0.05852948 
•0.04690446 

-0.00538277 
0.00418941 

-0.06112862 
0.97933123 
0.11533729 
0.15434950 

L3s 

-0.00286564 
-0.00182309 
-0.04430855 
-0.13521149 
0.98425352 
0.10482360 

K4a 

0.00374448 
0.00167451 
0.06180462 

-0.13660236 
-0.12048052 
0.98131926 

L2p 

(2pW 0.99999129 
(ZpKj.) -0.00166657 
(SpKjJ -0.00341375 
OpLu.) 0.00020900 
{4PKLl) -0,00159536 

{3dKi) 
(3dM 
(4dKj.) 

K2p 

0.00196846 
0.99463697 
0.10101224 
0.00919821 
•0.02011942 

K3d 

0.99284320 
-0.07301208 
0.09450697 

K3p 

0.00336923 
-0.09849474 
0.98607813 
0.07033578 
0.11397237 

L3d 

0.07588640 
0.99674590 
-0.02718119 

L3p 

-0.00021768 
0.00379760 
-0.09043213 
0.97923864 
0.18138124 

K4d 

-0.09221488 
0.03415845 
0.99515304 

K4p 

0.00132138 
0.031278 34 

-0.09620957 
-0.18989424 
0.97657755 

Kls 

(IsKiJ 0.99764693 
(ZsLuJ -0.04965867 
(ZsKJ.) -0.04723853 
(3aKJ-) 0.00252578 
ÔSLjl) 0.00089896 
(4SKJ.) -0.00019114 

LZs 

0.04798246 
0.99820028 
-0.03537829 
-0.00639735 
-0.00042977 
•0.00076841 

Oxygen +4 

K2s 

0.04854919 
0.03313889 
0.99406187 
0.03979286 
0.06285750 
-0.05339242 

K38 

-0.00422273 
0.00521991 

-0.04025158 
0.97856119 
0.14061241 
0.14484631 

L3s 

-0.00286797 
-0.00210575 
-0.04879750 
-0.16037810 
0.97850952 
Q.12001661 

K48 

0.00384989 
0.00206337 
0.06600004 

-0.12274217 
-0.13709515 
0.98069572 

(2pW 
(2pKa.) -
(3pKj.) -
(3pW 
(4pK0 

L2p 

0.99999188 
0.00146324 
0.0C333787 
0.00092916 
0.00134746 

(3dKjL) 
(3dW 
(4dKjO 

K2p 

0.00177861 
0.99385579 
0.10826344 
0.00972531 
-0.02077315 

K3d 

0.99160544 
-0.07236189 
0.10715569 

K3p 

0.00320224 
-0.10600003 
0.98584914 
0.07835331 
0.10351648 

L3d 

0.07623860 
0.99655880 
-0.03252957 

L3p 

-0.00096055 
0.00518022 
-0.09757220 
0.97571567 
0.19603758 

K4d 

-0.10443303 
0.04042590 
0.99370994 

K4p 

0.00127318 
0.03138879 

-0.08275694 
-0.20431382 
0.97489496 

Figure 10. (Continued) 
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Kl, 

(IsKj.) 0.99767742 
(2sLj.) -0.04967286 
(ZaKj.) -0.04650447 
(SsKj.) 0.00296695 
OsLj.) 0.00055894 
(4sKj.) -0.00015985 

L2, 

0.04761100 
0.99800482 

-0.04070604 
-0.00650905 
-0.00004484 
•0.00074737 

Fluorine +5 

K2, 

•0.04812855 
0.03825484 
0.99351959 
0.01204514 
0.07395153 

-0.05936681 

K3, 

-0.00339642 
0.00603238 

-0.01539779 
0.98069437 
0.14795893 
0.12673219 

L3, 

-0.00314441 
-0.00335575 
-0.06304121 
-0.16427989 

0.97661104 
0.12348094 

K4. 

0.00394040 
0.00270644 
0.06990839 

-0.10513678 
-0.13736740 

0.98242878 

L2p 

(2pluJ 0.99999473 
(2pKj.) -0.00047300 
(3pKj.) -0.00287546 
(3pLa) -0.00000995 
(4pKj -0.00130157 

(3dKj.) 
(SdLiJ 
{4dKj.) 

K2p 

0.00076826 
0.99324024 
0.11356101 
0.01037461 

-0.02165721 

K3d 

0.99269887 
-0.08195992 
0.08849567 

K3p 

0.00292848 
-0.11076936 
0.98357141 
0.08186271 
0.11664877 

L3d 

0.08506565 
0.99586433 

-0.03190680 

L3p 

-0.00002989 
0.00597423 

-0.10380163 
0.97492998 
0.19672561 

K4d 

-0.08551460 
0.03920179 
0.99556538 

K4p 

0.00100948 
0.03416997 

-0.09438068 
-0.20664535 

0.97325294 

(IsKjJ 0, 
(zsljj - 0. 
(2bkjj -0. 
oskj 0. 
(38 lj 0. 
{4sKjJ -0. 

Kls 

99768425 
04972839 
04627627 
00331518 
00031385 
00014051 

L2B 

0.04774580 
0.99789685 

•0.04340644 
-0.00604524 
-0.00058873 
•0.00076212 

Neon +6 

k2s 

0.04808568 
0.04072361 
0.99215307 

-0.02149364 
0.08243084 

-0.06636310 

k38 

-0.00224892 
0.00688162 
0.01506333 
0.97959542 
0.16427402 
0.11457274 

l3s 

-0.00342115 
-0.00355723 
-0.07632566 
•0.17627640 
0.97387624 
0.12100253 

k48 

0.00410591 
0.00314913 
0.07452112 

-0.09385775 
-0.13335563 

0.98378186 

L2p K2p K3p L.3p K4p 

(ZpLo) 0.99999560 0.00049883 0.00264445 -0.00027280 0.00105827 
(ZpKjJ -0.0C025275 0.99404074 -0.10426803 0.00313828 0.03163475 
(SpKjJ -0.00261897 0.10598544 0.98693193 -O.IC090376 -0.06740530 
(SpLjJ 0.00025861 0.01238644 0.08400180 0.97422514 -0.20898687 
(4pKj -0.00120273 -0.02226916 0.08960858 0.20172707 0.97507900 

K3d L3d K4d 

' (3dKJ 0.99224537 0.08946254 -0.08628760 
(3dLaJ -0.08619035 0.99543726 0.04093721 
(4dKjJ 0.08955624 -0.03316260 0.99542884 

^The expansion coefficient for the (K4f) NO is unity because this NO is identical 
to the (4fK) ST AO. 

Figure 10, (Continued) 
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Natural orbital occupation coefficients for separated pair approximations to beryllium-like 
atomic wavefunctions 

NO Li* Be C+2 N+3 0+4 F+5 

Separated pair approximation *2 

Kls 0. 99882 0. 99938 0.99962 0.99974 0.99982 0. 99987 0. 99990 0.99992 
K2s -0. 02730 -0. 02002 -0.01616 -0.01371 -0.01069 -0. 00962 -0. 00859 -0.00759 
K2p -0. 04024 -0. 02889 -0.02235 -0.01788 -0.01571 -0. 01315 -0. 01145 -0. 01020 
LZs 0. 92869 0. 94950 0.95695 0.96080 0.96329 0. 96492 0. 96617 0.96712 
L2p -0. 37085 -0. 31376 -0.29025 -0.27724 -0.26848 -0. 26253 -0. 25791 -0.25433 

Separated pair approximation 

Kls 0. 99846 0. 99922 0.99953 0.99969 0.99979 0. 99984 0. 99988 0.99991 
K2s -0. 03521 -0. 02409 -0.01818 -0.01392 -0.01103 -0. 01019 -0. 00854 -0. 00773 
K38 -0. 00360 -0. 00247 -0.03205 -0.00189 -0.00168 -0. 00156 -0. 00140 -0.00127 
K2p -0. 04136 -0. 03019 -0.02354 -0.01959 -0.01679 -0. 01384 -0. 01256 -0.01071 
K3p -0. 00641 -0. 00517 -0.00419 -0.00347 -0.00291 -0. 00250 -0. 00231 -0.00194 
K3d -0. 00859 -0. 00660 -0.00534 -0.00447 -0.00382 -0. 00345 -0. 00309 -0.00281 
hZs  0. 92864 0. 94980 0.95710 0.96104 0.96348 0. 96519 0. 96637 0. 96739 
L2p -0. 37098 -0. 31286 -0.28976 -0.27642 -0.26779 -0. 26154 -0. 25717 -0.25328 

Separated pair approximation 

Kls 0. 99846 0. 99920 0.99952 0.99968 0.99978 0. 99983 0. 99987 0.99990 
K2s -0. 03529 -0. 02432 -0.01842 -0.01493 -0.01228 -0. 01060 -0. 00910 -0.00817 
KSs -0. 00333 -0. 00315 -0.00280 -0.00214 -0.00177 -0. 00181 •0. 00151 -0.00135 
K4s -0. 00070 -0. 00036 -0.00041 -0.00037 -0.00039 -0. 00038 •0. 00039 -0.00032 
K2p -0. 04103 -0. 03021 -0.02354 -0.01919 -0.01610 -0. 01384 •0. 01235 -0.01071 
K3p -0. 00684 -0. 00558 -0.00451 -0.00382 -0.00290 -0. 00265 "0. 00224 -0.00201 
K4p -0. 00158 -0. 00129 -0.00111 -0.00097 -0.00075 -0. 00071 -0. 00065 -0. 00055 
K3d -0. 00903 -0. 00695 -0.00579 -0.00483 -0.00415 -0. 00374 -0. 00316 -0.00281 
K4d -0. 00239 -0. 00195 -0.00170 -0.00143 -0.00127 -0. 00117 -0. 00091 -0.00089 
K4f -0. 00275 -0. 00226 -0.00190 -0.00170 -0.00151 -0. 00134 -0. 00105 -0.00106 
L2s 0. 93136 0. 95224 0.95817 0.96190 0.96545 0. 96597 0. 96746 0.96831 
L38 -0. 00909 -0. 00678 -0.00780 -0.00560 -0.00481 -0. 00305 -0. 00268 -0.00220 
L2p -0. 36369 -0. 30469 -0.28560 -0.27297 -0. 26017 -0. 25835 -0. 25281 -0.24954 
L3p -0. 00590 -0. 00577 -0.00353 -0.00312 -0.00315 -0. 00228 -0. 00259 -0.00242 
L3d -0. 01352 -0. 01808 -0.01609 -0.01376 -0.01330 -0. 01151 -0. 01011 -0.00939 

Figure 11. Natural orbital occupation coefficients for separated pair 
approximations to beryllium-like atomic wavefunctions 
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Occupation numbers of separated pair approximation for beryllium, 
nitrogen +3 and neon +6 ̂  

*2 1 

*3 

t 

NO Be n+3 Ne+^ 

Kls 99840. 06 99955.68 99974.48 

K2s 59.15 15.07 8. 27 
K2p 91.26 25.92 15. 26 

K3s 0.99 0.31 0. 23 
K3p 3. 11 0. 84 0. 50 
K3d . 4. 83 1. 72 1. 00 

K4s 0.01 0.01 0. 02 
K4p 0.17 0.06 0.04 
K4d 0.38 0.16 0.08 
K4f 0. 51 0.23 0. 11 

r 
— L28 90676.10 93210.12 93597. 11 

*2. *3 _ - L2p 9283.60 6768. 88 6391.28 

LI38 4.60 2.31 0. 72 
$4 L3p 3.33 0.99 0.67 

__ L3d 32.69 17.69 10. 22 

^The occupation numbers, which are given in units of 10"^, are 
those of APS G The brackets Indicate which orbitals would be 
included in the APSG's and $4. 

Figure 12, Occupation numbers of separated pair approximation ̂  for 
beryllium, nitrogen +3 and neon +6 
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Comparison between the antisymmetrized product of the first two natural orbitals and the Hartree-
Fock wavefunction s-

APSG li: Be .+2 
n 
+3 +̂4 .+5 Ne +6 

$1 
0.01743 
0. 2347% 
0. 97213 

0.01629 
0.1118% 
0.99901 

0.02401 
0.0991% 
0.99855 

0.03817 
0.1048% 
0.99768 

0.05834 
0.1142% 
0.99710 

0.08452 
0. 1238% 
0.99669 

0.11655 
0. 1325% 
0.99636 

0. 15448 
0.1403% 
0.99614 

0.00518 
0.0697% 
0.96308 

0.00458 
0. 0617% 
0. 96280 

0.00445 
0. 0599% 
0.96305 

0.00177 
0.0121% 
0.99876 

0.00092 
0.0063% 
0.99860 

0.00091 
0. 0062% 
0.99842 

0.00229 
0. 0095% 
0.99984 

0.00080 
0. 0030% 
0.99974 

0.00057 
0. 0024% 
0.99974 

0.00383 
0.0105% 
0.99986 

0.00089 
0. 0024% 
0.99992 

0.00059 
0. 0016% 
0.99993 

0.0Q546 
0.0107% 
0.99982 

0.00120 
0.0024% 
0.99995 

0.00065 
0.0013% 
0.99996 

0.00725 
0.0106% 
0.99980 

0.00133 
0. 0020% 
0.99995 

0. 00066 
0. 0010% 
0.99996 

6.00905 
0.0103% 
0.9998Ô 

0.00171 
0. 0020% 
0.99996 

0.00107 
0.0012% 
0.99997 

0.01100 
0.0100% 
0.99977 

0.00166 
0.0015% 
0.99996 

0.00096 
0. 0009% 
0.99996 

Every entry consists of three numbers. The first line represents the energy difference 
E(PNO)-E(HF). The second line is the per cent relative deviation lOO[E(PNO) - E(HF)]/E(HF). 
The third line is the overlap between the wavefunctions representing the PNO-AP and the HF-AP. 

Figure 13.. Comparison between the antisymmetrized product of the first two natural orbitals and 
the Hartree-Fock wavefunction 
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Energie* of variou* separated pair approximation* tor beryllium «like atom* 

Energy Li* Be B+ C+2 N+3 0+4 P+5 Ne*' 

AE(APSG «1)* 0.08960 0.11058 0.13539 . 0.16413 0.19847 0.23802 0.28241 0. 33294 

AE(APSG $2) ' 0.01621 
77.54% 

0.01922 
79. 62% 

0.02335 
79. 04% 

0.02671 
78. 80% 

0.03036 
78. 33% 

0.03333 
78. 29% 

0.03553 
78. 58% 

0.03828 
78. 55% 

AE(APSG O3) * 0.00914 
87. 34% 

0.01216 
87.10% 

0,01567 
85.93% 

0.01786 
85. 82% 

0.02021 
85. 58% 

0. 02171 
85. 86% 

0.02233 
86. 53% 

0.02335 
86. 92% 

AE(APSG $4) ' 0.00737 
89. 79% 

0.00966 
89. 76% 

0.01280 
88.51% 

0.01465 
88, 37% 

0.01654 
88. 20% 

0.01776 
88. 43% 

0.01834 
88. 94% 

0,01919 
89. 25% 

AE(SP) '' 0.00594 
91. 77% 

0.00808 
91.43% 

0.01100 
90. 12% 

0.01280 
89. 84% 

0.01449 
89. 66% 

0.01566 
89. 80% 

0.01623 
90. 22% 

0.01705 
90,45% 

AE(corr. ) -0.07217 -0.09429 -0.11138 -0.12596 -0.14013 •0.15350 -0.16586 -0.17846 

E(HF)^ .7.42823 •14.57302 -24.23758 -36.40850 •51,08231 -68.25771 .87.93404 .110.1110 

E(exact)®'^ .7.50040 -14.66731 -24.34896 -36.53446 -51.22244 -68.41121 -88, 09990 .110.28946 

E(rel.)° 0.000165 0.000511 0.001553 0,003668 0. 007378 0,013294 

•0.342622 -0.924504 -1,759554 -2.847142 -4'. 186058 -5,775691 

I2' J. 669283 -1.393994 -2.370213 -3.597518 -5.075930 -6.805794 

E++' -13.655566 -22.030972 -32.406247 -44.781445 -59,156595 -75,531712 

Results of other calculations 

6E(LS)8')' 0.0674 0.0784 0.0945 0,1167 0,1447 0.1780 0.2178 

AE(M5)K'^ 0,050 0.056 0.067 0.082 0.104 0,131 

AE(W)8'J 0. 05079 0.05316 0.05429 0.05557 0.05640 0. 05641 0,05680 

* AE (APSG = E(APSG •{) - E(exact). Also given Is the per cent correlation energy recovered, 
i.e.. 100{E(APSG 4>i) - E(HF))/{E(exact) - E(HF)}. 

^ AE(SP) 5 estimated limit of separated pair approximation. 

® AE(corr.) s E(exact) - E(HF). 

'^C. C. J. Rootha&n, L. M. Sachs and A. M. Weiss, Rev. Mod. Phys. 3^, 179(1960). 

'E(exact) n + ̂ 1 + ̂ 2 + E(rel. ) m exact non-relativistic energy corrected to infinite nuclear mass, 

^The values for lithium -1 and neon +6 are obtained by extrapolation. 

8 .. ) a E(' • • ) - E(exact). 

^E(LS) B energies calculated by J. Linderberg and H. Shull, J. Mol. Spect. 1 (1960). 

^E(MS) n energies calculated by R. McWeeny and B. T. Sutcllffe, Proc. Roy. Soc. 273, 103 (1963), 

^E(W) . energies calculated by R. S. Watson, Ann. Phys. 13, 250 (1961). 

Figure 14. Energies of various separated pair approximations for beryl­
lium- like atoms 



www.manaraa.com

K-geminal defect of two-electron systems 

Energy a Li+ Ne+® 

E;+ -7. 26930 -13. 64527 -22. 02066 -32. 39573 -44. 77071 -59. 14556 -75. 52048 -93. 89532 

-0. 01061 -0. 01030 -0. 01031 -0. 01052 -0.01074 -0. 01104 -0. 01123 -0. 01149 

-7. 27671 -13. 65224 -22. 02740 -32.40248 -44. 77745 -59.15241 -75. 52749 -93. 90245 

-0. 00320 -0. 00333 -0. 00357 -0. 00377 -0.00400 -0. 00419 -0. 00422 -0. 00436 

-7. 27848 -13. 65399 -22. 02917 -32. 40440 -44. 77940 -59. 15450 -75.52960 -93. 90467 

-0. 00143 -0. 00158 -0. 00180 -0. 00185 -0.00205 -0. 00210 -0. 00211 -0. 00214 

E++ -7. 27991 -13. 65557 -22. 03097 -32. 40625 -44.78145 -59. 15660 -75. 53171 -93. 90681 

= energy calculated using the approximation 

= E^^ + = exact two-electron energy. 

Figure 15. K-geminal defect of two-electron systems 
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Energy analysla of separated pair approximations for lithium -1 

Contributions APSG •4 APSG O3 APSG C-g 

e(Kle. Kls) 
Ae(Kla. K2s) 
AS (Kls. KSs) 
AeiKls, K4s) 
AG (Kls. K2p) 
Ae(Kls, K3p) 
Ae(Kls. K4p) 
Ae(Kls. K3d) 
AEIKla, K4d) 
Ae(Kls, K4f) 
AG (Kls) 
AG(K. others) 
AE(K) 
E(K) 

-0.01385 
-0.00075 
-0.00001 
-0.02051 
-0.00204 
-0.00031 
-0.00244 
-0,00051 
-0.00056 

-7.23561 -7.23565 

-0.04098 
.0.00028 
-0.04126 
-7.27687 

-0.01378 
-0.00079 

-0 .02066 
-0.00211 

-0.00247 

-0.03981 
-0.00013 
-0. 03994 
-7.27559 

-0.01234 

-0 .02108 

•7.23521 

-0.03342 
-0.00008 
-0.03350 
-7.26871 

E(L2s. L2s) 
AG(L2B, L3S) 
AG(L2S. L2p) 
AG(L2S. L3p) 
AG(L2S, L3d) 
AE(L2s) 
AG(L2p. L2p) 
AE(L2p. L2s) 
AG(L2p, L3s) 
AS(L2p. L3p) 
AG(L2p. L3d) 
AG(L2p) 
A£(L. others) 
AE(L) 
E(L) 

-0.00019 
-0.02342 
-0.00011 
-0.00053 

0.02226 
-0.02342 

0.00006 
0.00008 
0.00043 

-1.18767 

-0. 02425 

-0.00059 
-0.00010 
-0. 02494 
-1 .21261  

-0. 02384 

0.02302 
-0.02384 

•1. 18744 

-0.02384 

-0,00082 
0.00000 
-0.02466 
- 1 . 2 1 2 1 0  

-0. 02383 

0.02280 
.0.02383 

-1.18740 

-0,02383 

-0.00103 
0. 00000 
-0.02486 
- 1 . 2 1 2 2 6  

t(!(Kls, L2s) 
Acf(Kls, L2p) 
A<< (others) 
AI(K. L) 
I(K. L) 

-0.00300 
-0,00005 

0. 99950 

-0.00305 
0. 99645 

-0,00298 
-0.00003 

0,99944 

-0,00301 
0. 99643 

-0,00277 
-0. 00001 

0,99956 

-0.00278 
0.99678 

E(PNO) 
E-E(PNO) 
E-E(K)+E(L)+I(K, L) 

-7,42378 
-0,06925 
-7,49303 

-7.42365 
-0.06761 
-7.49126 

-7.42305 
-0.06114 
-7.48419 

Figure 16. Energy analysis of separated pair approximations for lithium 
-1 
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Energy analyeis of separated pair approximations for beryllium 

Contributions APSG APSG APSG C, 

E(Kls. KIb) 
Ae(Kl8. K2s) 
AKfKls, K3s) 
AElKls, K4s) 
Ae(Kls, K2p) 
AK(Kl8. K3p) 
Ae(Kls, K4p) 
Ae(Kl8. K3d) 
AR(Kls. K4d) 
AG(Kl3. K4f) 
AE(Kls) 
AE(K, others) 
AE(K) 
E(K) 

-0.01291 
-0. 00082 
-0.00006 
-0.02076 
-0.00209 
-0.00036 
-0. 00252 
-0.00055 
-0.00061 

-13.60677 

• 0.04068 
0, 00020 
-0,04048 
-13.64725 

-0.01257 
-0.00078 

-0. 02055 
-0.00221 

-0.00263 

-13.60721 

-0.03874 
-0,00007 
-0,03881 

• 13.64602 

-0.01183 

-0. 02089 

-13.60720 

-0.03272 
-0.00001 
-0.03273 
•13.63993 

E(L2a. L2s) 
AE(L28, L38) 
AE(L2a, L2p) 
AE(L2a. L3p) 
AE(L2a, L3d) 
AE{L23) 
Ae(L2p. L2p) 
AE(L2p. L28) 
AG(I.2p, L3a) 
AE(L2p, L3p) 
AE(L2p, L3d) 
AE(L2p) 
AE(L, others) 
AE(L) 
E(L) 

-0.00023 
-0.03905 
-0.00019 
-0. 00128 

0.02945 
-0.03905 
0.00006 
0. 00014 
0.00085 

• 2, 85549 

-0. 04075 

-0,00855 
0.00002 
-0, 04928 
-2. 90477 

-0,03985 

0,03089 
-0. 03985 

-2.85357 

-0.03985 

-0.00896 
0,00000 
-0,04881 
-2,90238 

-0. 03973 

0,03154 
-0,03973 

-2. 85596 

-0.03973 

-0.00819 
0.00000 
-0,04792 
-2. 90388 

^(Kla, L2a) 
Att'Kls, L2p) 
Acf (othera) 
AI(K, L) 
I(K. L) 

0.00439 
-0,00017 

1,89015 

0. 00422 
1.89437 

0, 00463 
-0,00006 

1 . 8 8 8 6 8  

0,00457 
.1, 89325 

0,00384 
-0,00003 

1.89191 

0.00381 
1. 89572 

E(PNO) . 
E-E(PNÔ) 
E=E(K)+E(L)+I(K, L) 

• 14.57211 
-0.08554 
• 14.65765 

.14.57210 
-0,08305 
• 14,65515 

-14.57125 
-0. 07684 
-14.64809 

Figure 17. Energy analysis of separated pair approximations for beryllium 
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Energy analysis of separated pair approximations for boron +1 

Contributions APSG 0^ APSG Oj APS G tg 

e(KU. Kls) 
AE(Kl8. K2fl) 
AE(Kls, K3a) 
Ae(Kls, K4a) 
AE(Kl9. K2p) 
Ae(Kl8, K3p) 
AS (Kls, K4p) 
AG (Kls, K3d) 
Ae(Kls, K4d) 
AS (Kls, K4f) 
AG (Kls) 
AE(K, others) 
AE(K) 
E(K) 

-0.01186 
-0,00095 
-0. 00008 
-0.02034 
-0.00223 
-0.00034 
-0.00271 
-0.00057 
-0.00064 

-21.97820 

-0,03972 
0. 00028 

-0, 03944 
-22.01764 

-0.01169 
-0.00081 

-0.02032 
-0,00222 

-0.00271 

-21.97860 

.0.03775 
0. 00001 
-0. 03774 
-22.01634 

-0.01152 

-0.02045 

-21.97876 

-0.03197 
0.00000 
-0.03197 

.22.01073 

e(L2s. L2s) 
Ae(L2s. L3s) 
Ae(L2s, L2p) 
AE(L2s. L3p) 
AE(L2a, L3d) 
Ae(L2s) 
AE(L2p, L2p) 
AE(L2p. L29) 
AE(L2p, L3s) 
A E(L2p. L3p) 
AE(L2p, L3d) 
AE(L2p) 
AE(l, others) 
AE(L) 
E(L) 

-0.00032 
-0.05307 
-0.00015 
-0.00161 

0.03655 
-0.05307 
0.00009 
0.00008 
0.00099 

-4.98125 

-0.05515 

-0,01536 
0,00012 
-0,07039 
-5,05164 

-0,05377 

0,03761 
-0,05377 

-4,98204 

-0.05377 

-0,01616 
0.00000 
-0.06993 
-5.05197 

-0.05339 

0. 03750 
-0.05339 

-4.97780 

-0.05339 

-0.01589 
0.00000 

-0.06928 
-5.04708 

eJf(Kl8. L2s) 
At?(Kls, L2p) 
Avf (others) 
AI(K, L) 
I(K, L) 

0.01093 
-0.00025 

2.72244 

0. 01068 
2.73312 

0.01123 
-0. 00007 

2.72386 

0.01116 
2.73502 

0.01096 
-0. 00003 

2.72127 

0.01093 
2.73220 

E(PNO)' 
E-E(PNO) 
E«E(K)+E(L)+I(K, L) 

-24.23701 
-0.09915 
-24.33616 

.24.23678 
-0.09651 
.24.33329 

-24.23529 
-0.09032 

.24.32561 

Figure 18. Energy analysis of separated pair approximations for boron +1 
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Energy of aeparated pair approximatlona for carbon +2 

Contributions APSG APSG 4», APSG 

e(Ki«. KIB) 
Ae(Kl8, K2a) 
Ae(KlB, K3s) 
Ae(Kls, K4s) 
AE(Kl8. K2p) 
As (Kls, K3p) 
Ae(Kl8, K4p) 
AS (Kls, K3d) 

(Kla, K4d) 
Ae(Kls. K4f) 
AE(Kl8) 
AE (K, othera) 
AE(K) 
E(K) 

>0.01128 
-0. 00087 
-0. 00008 
.0. 02004 
-0.00225 
-0.00036 
-0.00275 
-0.00057 
-0. 00068 

-32,35049 

>0,03888 
0,00029 
-0.03859 
-32.38908 

-0.01050 
-0.00088 

-0.02042 
-0.00223 

-0.00273 

-3:,3:: 

-0.03676 
0.00001 
-0.03675 
>32.38768 

-0.01134 

-0.01988 

-32.35079 

-0.03122 
0.00004 
-0.03118 
-32.38197 

E(L28, L2a) 
AE(L2s, L38) 
AE{L2a, L2p) 
AE{L28, L3p) 
AE(L2a, L3d) 
AE (L2a) 
AE(L2p, L2p) 
AE(L2p, L28) 
AE(L2p, L3b) 
AE(L2p, L3p) 
AE(L2p. L3d) 
AE(L2p) 
AE(L, others) 
AE(L) 
E(L) . 

>0. 00026 
-0. 06589 
-0, 00016 
-0,00178 

0,04155 
-0, 06589 
0. 00007 
0. 00008 
0.00102 

-7. 59180 

-0.06809 

.0.02317 
0,00012 
-0.09114 
-7.68294 

-0,06664 

0. 04256 
-0.06664 

-7. 59274 

-0.06664 

-0.02408 
0.00000 
-0.09072 
-7. 68346 

>0.06632 

0.04308 
-0. 06632 

.7.59365 

-0.06632 

-0.02324 
0.00000 

-0. 08956 
-7.68321 

J?{K1B, L28) 
Acî(Kl8, L2p) 
Acf (otherB) 
AI(K, L) 
I(K, L) 

0.01807 
•0.00024 

3,53438 

0.01783 
3,55221 

0.01855 
-0,00007 

3.53606 

0.01848 
3.55454 

0.01770 
-0. 00004 

3.53977 

0.01766 
3.55743 

E(PNO) • 
E-E(PNO) 
EbE(K)+E(L)+I(K, L) 

-26.40791 
-0.11190 
•36.51981 

•36.40761 
-0.10899 
•36.51660 

.36.40467 
-0. 10308 
.36.50775 

Figure 19. Energy analysis of separated pair approximations for carbon +2 
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Energy analysis of separated pair approximations for nitrogen +3 

Contributions APSG APSG 0, APSG 4", 

e(Kl8. Kls) 
Ae(Kl8, K2b) 
Ae(Kl8. K3s) 
AE(Kla. K4s) 
Ae(Kl8. K2p) 
AE(Kl8, K3p) 
AE(Klfl, K4p) 
Ae(Kl8, K3d) 
AE(K1S. K4d) 
Ae(Kl8, K4f) 
ae(l<i8) 
AE:(K, others) 
AE(K) 
E(K) 

-0,01072 
-0.00085 
-0.00010 
-0.01977 
-0.00205 
-0.00030 
-0.00276 
-0. 00059 
-0. 00070 

-44.72223 

-0.03784 
-0.00012 
-0.03796 

-44.76019 

-0. 00965 
-0.00089 

-0.02050 
-0.00223 

-0.00273 

-44.72360 

-0.03600 
0.00002 
-0.03598 
-44.75958 

-0,01007 

-0. 02046 

-44.72369 

-0.03053 
0.00006 
-0.03047 
-44.75416 

e(L2s, L2s) 
AE(L28, L3s) 
AE(L2a, L2p) 
AE(L29, L3p) 
AE(L28, L3d) 
AE(L29) 
AE(L2p, L2p) 
AE(L2p. L28) 
AE(L2p, L3s) 
Ae(L2p. L3p) 
AG(L2p, L3d) 
AE(L2p) 
AE(L, others) 
AE(L) 
E(L) 

-0.00023 
-0.07696 
-0.00020 
-0.00211 

0. 04480 
-0.07696 
0.00006 
0. 00009 
0.00114 

.10.69690 

-0.07950 

.0.03087 
0,00023 
-0.11014 
-10,80704 

-0.07897 

0,04733 
-0,07897 

-10,69730 

•0,07897 

-0,03164 
0,00000 
-0.11061 

.10, 80791 

-0.07860 

0.04737 
-0.07860 

-10.69650 

-0.07860 

-0.03123 
0.00000 

-0. 10983 
.10.80633 

xflKlB, L2s) 
Atf(Kla, L2p) 
At? (others) 
AI(K, L) 
I(K. L) 

0.02412 
-0.00026 

4,33747 

0.02386 
4.36133 

0.02553 
-0.00006 

4.33979 

0.02547 
4.36526 

0.02510 
-0.00003 

4.34334 

0.02507 
4.36841 

E(PNO): 
E-E(PNO) 
E,E(K)+E(L)+I(K, L) 

.51.08166 
-0.12424 
-51.20590 

-51,08111 
- 0 , 1 2 1 1 2  
-51,20223 

-51,07685 
-0,11523 
-51.19208 

Figure 20. Energy analysis of separated pair approximations for nitrogen 
+3 
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Energy «nalyala of separated pair approximation* for oxygen +4 

Contributions APSG APSG 4», APSG «, 

e(Kl8, Kla) 
Ae(Kls, K2s) 
Ae(Kls, K3B) 
Ae(Kl8, K4s) 
Ae(Kls, K2p) 
Ae(KlE, K3p) 
Ae(Kl8, K4p) 
Ae(Kls. K3d) 
Ae(Kls. K4d) 
Ae(Kl8, K4f) 
Ae(Kla) 
AE(K, others) 
AE(K) 
E{K) 

-0.01056 
-0,00094 
-0.00012 
-0.01953 
-0.00214 
-0. 00033 
-0.0^283 
-0.00062 
-0.00071 

-59.09645 

-0. 03778 
0.00038 
-0.03740 
-59. 13385 

-0.01023 
-0.00089 

-0.01940 
-0.00218 

-0. 00284 

-50.09689 

-0.03554 
0.00020 
-6.03534 
-59. 13223 

-0.01005 

-0.01987 

-59.09693 

-0.02992 
0.00003 
-0.02989 

.59. 12682 

e(L2s, L28) 
AE(L2s. L3s) 
Ae(L28, L2p) 
AE(L2a. L3p) 
Ae(L28, L3d) 
ae(l2b) 
Ae(L2p, L2p) 
Ae(L2p, L2s) 
Ae(L2p, L3s) 
A£(L2p, L3p) 
Ae(L2p, L3d) 
Ae(L2p) 
AS(Li, others) 
AE(L) 
E(L) 

-0.00016 
-0.08999 
-0.00016 
-0.00215 

0. 04980 
-0.08999 
0.00004 
0. 00008 
0,00114 

-14.29999 

-0. 09246 

-0,03893 
0.00014 
-0.13125 
-14.43124 

-0.09102 

0.05101 
-0.09102 

-14.30172 

-0.09102 

-0.04001 
0.00000 
-0.13103 
• 14.43275 

-0.09075 

0.05244 
-0. 09075 

• 14.30388 

-0.09075 

-0.03831 
0.00000 
-0.12906 
• 14.43294 

eîCKls, L2s) 
Acf(Kl8. L2p) 
Arf (others) 
AI{K. L) 
I(K. L) 

0.03248 
-0.00023 

5. 13939 

0.03225 
5.17164 

0. 03332 
-0. 00007 

5,14223 

0,03325 
5, 17548 

0.03157 
-0.00004 

5.1503b 

0,03153 
5.18188 

E(PNO) , 
E-E(PNO) 
E=E(K)+E(L)+I(K. t) 

-68,25705 
-0,13640 
-68.39345 

-68. 25638 
-0.13312 
-68.38950 

-68.25046 
-0.12742 
-68. 37788 

Figure 21. Energy analysis of separated pair approximations for oxygen +4 
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Energy analysis of separated pair approximations for fluorine +5 

Contributions APSG APSG APSG 

e(Kl«, Kls) 
AE(Kl8. K2a) 
Ae(Kla, K3s) 
AG (Kls. K4s) 
AG (Kls, KZpT 
AS (Kls. K3p) 
AS (Kls, K4p) 
Ae{Kla. K3d) 
AE(Kls. K4d) 
AE(Kl8. K4f) 
AE(Kls) 
AE(K, others) 
AE(K) 
E(K) 

-0.01014 
-0.00090 
-0.00013 
-0.01965 
-0.00198 
-0,00036 
-0.00272 
-0.00054 
-0.00062 

-75.47009 

-0.03704 
0. 00007 
-0.03697 
-75.50706 

-0.00949 
-0.00091 

-0.01984 
-0.00224 

-0.00285 

-75.47045 

-0.03533 
0.00041 
-0:03492 
-75.50537 

-0.00997 

-0.01944 

-75.47030 

-0.02941 
0.00005 
-0.02936 
-75.49966 

e(L2a. L2s) 
Ae(L2s, L3s) 
AE(L2s. L2p) 
AE(L2a. L3p) 
AE(L2a. L3d) 
AE(L28) 
Ae(L2p, L2p) 
Ae(L2p, L23) 
Ae(L2p, L33) 
AE(L2p, L3p) 
AE(L2p. L3d) 
AK(L2p) 
AE(L, othera) 
AE(L) 
E(L) 

.0.00015 
-0.10137 
-0.00021 
-0 .00218 

0.05477 
-0. 10137 
0. 00004 
0.00010 
0.00113 

-18.40667 

-0.10391 

-0.04533 
0.00012 
-0.14912 
-18. 55579 

-0.10298 

0.05680 
-0.10298 

-18.40711 

-0. 10298 

-0.04618 
0.00000 
-0.14916 
-18.55627 

-0.10264 

0.05447 
-0.10264 

-18.40545 

-0.10264 

-0.04817 
0.00000 
-0.15081 
• 18.55626 

ef(Kls. L2b) 
Ac»(Kls, L2p) 
Ap? (others) 
AI(K, L) 
I(K, L) 

0,03770 
-0. 00020 

5.94379 

0.03750 
5. 98129 

0.03889 
-0. 00005 

5.94523 

0.03884 
5. 98407 

0.04083 
-0.00004 

5.95076 

0.04079 
5.99155 

E(PNO). 
E-E(PNO) 
E=E(K)+E(L)+I(K. L) 

-87.93297 
-0. 14859 
-88.08156 

• 87.93233 
-0, 14524 
• 88.07757 

• 87.92499 
-0.13938 
• 88.06437 

Figure 22. Energy analysis of separated pair approximations for fluorine 

+5 
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Energy analysis of separated pair approximations for neon +6 

Contributions APSG APSO APSG Gg 

e{Kl8, Kls) -93.84371 -93. 84472 -93.84426 
Ae(Ki8, KEB) -0.01016 -0.00977 -0.00961 
Ae(KlB. K3s) -0. 00087 -0.00086 
Ae(Kl8. K4s) -0.00012 
Ae(Kl8, K2p) -0. 01900 -0.01903 -0.01936 
Ae(Klfl, K3p) -0.00205 -0.00208 
AE(Kls. K4p) -0. 00031 
AEIKls, K3d) -0. 00268 -0.00288 
Ae(Klfl. K4d) -0. 00059 
Ae(Kls, K4f) -0.00069 
AE(Kl8) -0.03647 -0. 03462 -0.02897 
AE(K, others) -0.00016 0. 00005 0.00001 
AE(K) -0.03663 -0.03457 -0.02896 
E(K) -93.88034 -93. 87929 -93.87322 

E(L2a, LZs) -22.99596 -22.99404 -23.00265 
AEWvZs, L3B) -0.00013 
AE(L2B, L2p) -0. 11282 -0.11432 -0. 11427 
AE(L2B, L3p) -0.00022 
AE(L28, L3d) -0. 00230 
AE(L28) -0.11547 -0.11432 -0.11427 
AE(L2p, L2p) 0. 05757 0. 05904 0. 05903 
AE(L2p, L28) -0. 11282 -0.11432 -0.11427 
AE(L2p, L3s) 0.00003 
A6(L2p, L3p) 0. 00010 
AE(L2p, L3d) 0.00116 
AE(L2p) -0.05396 -0.05528 -0.05524 
AE(L. others) 0.00016 0.00000 0.00000 
AE{L,) -0.16927 -0. 16960 -0.16951 
E(L) -23.16523 -23. 16364 -23.17216 

ETIKLB, L2B) 6. 72963 6. 72942 6.74691 
Acl'(Kl8. L2p) 0.04586 0.04743 0.04732 
Ac^ (others) -0.00019 -0.00003 -0.00003 
AI(K. L) 0.04567 0. 04740 0.04729 
I(K. L) 6.77530 6. 77682 6.79420 

E(PNO) -110.11004 -110. 10934 -110;10000 
E-E(PNO) -0.16023 -0.15677 -0. 15118 
E=E(K)+E(L)+I(K, L) -110.27027 -110.26611 -110.25118 

Figure 23. Energy analysis of separated pair approximations for neon +6 
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Analysis of electronic energy of Ebbing and Henderson's separated 
pair approximation for lithium hydride ̂  

Contributions Values 

GdXl, IXl) -7.89420 
AG(IX1, 1X2) -0.01283 
AG(IX1, 1X3). -0.00554 
AS (1X1, 1X4) -0.00004 
Ae(ixi) -0.01841 
AS (I, others) 0.00030 
AE(D -0.01811 
E(D -7.91231 

8(0X1, OXD -2.46863 
A£(OXl, OX2) -0. 01245 
Ae(OXl, OX3) -0.00530 
Ae(oxi) -0.01775 
Ae(Ox2. OX2) 0.01175 
AG(OX2, OXl) -0.01245 
A£(OX2. OX3) 0.00014 
A8(0X2) -0.00056 
AG(OX3, OX3) 0.00635 
Ae(OX3, OXl) -0.00530 
A8(OX3, OX2) 0.00015 
Ae(OX3) 0.00120 
A£(0, others) 0.00000 
AE(0) -0.01711 
E(0) -2.48574 

cfdXl. OXl) 1.38115 
A^dXl, OX2) 0.00032 
A'=^(IX1, OX3) -0.00127 
AcP(lx2, OxD -0.00010 
A«J? (others) 0.00002 
Aid, O) -0.00103 
Id, O) 1.38012 

E(PNO) • -8. 98168 
E-E(PNO) -0.03625 
E=Ed)+E(0)+I(I, O) -9.01793 

^Relation to the notation of D. D. Ebbing and R. C. Henderson 

[J. Chem. Phys. 2225 (1965)]: (IXJ) (OXj) = Xj^. 

Figure M4. Analysis of electronic energy of Ebbing and Henderson's sepa­
rated pair approximation for lithium hydride 



www.manaraa.com

126 

Comparison of shell correlations for the beryllium atom ̂  

Source K-shell®" L-shell^ Intrashell total ̂  

Kelly ̂  -0.04212 -0.04488 -0.08700 

Tuan, Sinanoglu ̂  -0.04395 -0.04392 -0. 08787 
* j 

Geller) et. al. -0.042083 -0.044381 -0.086464 

APSG $4 -0.04048 -0.04489 -0.08537 

APSG -0.04206 -0.04489 -0.08695 

^ Listed are^corr. and (2s^) for the first three authors, 
and àE{K} and AE(L) for the present work. Thus for the first three 
authors the intrashell total represents the energy lowering beyond the 
Hartree-Fock energy, but for the present work it represents the lowering 
beyond the energy calculated from the antisymmetrized product of the 
principal NO's. Since the latter lies 0. 00091 a.u. above the Hartree-
Fock energy, the sum of -0.03695 a.u. given for APSG would 
correspond to a correlation enerj|y recovered of -0. 08604 a. u. . To this 
must be added the contribution Al(K, L) = -0.00017 to obtain.the total 
correlation energy recovered of -0. 08621 a.u. for ^SP-

^H. P. Kelly, Phys. Rev. 131' 684 (1963); ibid. 136, B896 (1964). 

^ D. F. Tuan and O. Sinanoglu, J. Chem. Phys. 41, 2677 (1964). 
The accuracy of these numbers is questioned by GTL, ref. d. Conversion 
to eV was made by M. Geller, et. al. , ref. d. 

^ M. Geller, H. S. Taylor and H. B. Le vine, J. Chem. Phys. 
1727 (1965). 

® The K-shell energy for APSG ^gp differs from that for APSG 0^ 
as discussed in the section on the K-shell correction. 

Figure 25. Comparison of shell correlations for the beryllium atom 
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Wavefunction and energies of various pair approximations containing inter electronic distances 
for beryllium 

Calculation 1 2 3 

ST AO exponents in Xjç and Xl Fixed Varied Varied 

Occupation- coefficients in APSG $£ Fixed Fixed Varied 

5* Correlated pair approximation APG Vj 

a C a Ç a C 

APSG $1 0.45679. 0.15846 

XK 0,10205 3.685 0.13787 3.839 

XL 0.47220 0.956 0.72858 1.126 

E(APG -14.60384 -14.63094 

E{APG ^i)-E{APSG -0.04711 -0.07421 

E{APSG $2)-E(APSG -0.09136 -0.09136 

3k Correlated pair approximation APG $2 

c a Ç a C 

APSG *2 0.98029 0. 74513 0.72954 

XK 0.02207 3.405 0. 05784 3. 895 0,07600 3.905 

XL 0.00149 0.993 0.20703 1.123 0.20740 1.123 

E(APG $2) -14.64934 -14, 65259 -14,65357 

E(APG ^2)-E(APSG $2) -0.00125 -0.00450 -0.00548 

E(APSG <È'3)-E(APSG *2) -0.00706 -0. 00706 -0.00706 

a = coefficients of and Ç = orbital exponents in Xjç and Xj^. 

Figure 26. Wavefunction and energies of various pair approximations containing interelectronic 
distances for beryllium 
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Classification of essential augmented separated pair configurations according to natural orbital geminals ^ 

Class 2b Class 3 Class 4 

Factorization used in calculation^ 

Geminals (Kls.LZs) 

(K2p..L2p) 3.8 

(K3p. L2p) 14 

(K2p. L3p) 4,11 

{K3p. L3p) 17 

(K3d. L3d) 21,25 

(K4d. L3d) 28 

Alternative factorization*" 

Geminals {L23. L2p) (L2s, L3p) (L2s.L3d) 

(Kls.KZp) 3.8 4.11 £ 

{Kls.K3p) 14 17 £ 

(Kl3,K3d) £ £ 21.25 

(Kl3,K4d) f £ 28 

Geminals (Kls. LZs) (KZs, L2s) (KZp, LZp) 

(Kls,Kls) d g 26 

{K2s,K2s) 2 d g 

(K3s,K3s) 16 g g 

(Kl3,K2s) e e 15 

(KZs, K3s) 19 g g 

(KZp, KZp) 6 g d 

(K3p,K3p) 23 g g 

(KZp, K3p) 5,7 g g 

(K2p,K4p) 20 g g * 

(K3p, Kip) 18 g g 

(K3d, K3d) 27 g g 

(K3d, K4d) 13,24 g g 

(LZs, L2s) d d l 

(L2p, L2p) 10 9 d 

Geminals I (KZs,K2s) 
(Kls, Kls) I 12 

Geminals I (L2p, L2p) 

(L2s. L2s) I 22 

Each number corresponds to one ASPC and indicates the order of importance as exhibited in the energy 
analysis of ASPE 

^ Both geminals have angular momentum L = 0. 

^ One geminal contains only K-shell orbital s and the other contains only L-shell orbitals. 

ASPC vanishes because of antisymmetry. 

^ ASPC is equivalent to an ASPC listed elsewhere. 

f Total angular momentum L * 0. 

® ASPC contributes less than lO"® a.u. to the total energy lowering beyond the separated pair approximation. 

Figure 27. Classification of essential augmented separated pair configurations according to natural 
orbital geminals 
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Energies of various augmented separated pair expansions for beryllium-like atoms 

Energy® Li" Be B+ C+2 N+3 0+4 F+5 No+6 

AE(HF) 0.07217 0.09429 0. 11138 0.12596 0.14013 0.15350 0.16586 0. 17846 

AE(APSG 4>2) ° 0.01621 0.01922 0.02335 0.02671 0.03036 0.03333 0.03553 0. 03828 

AE(ASPE 0.01537 
78, 70% 

0.01645 
82. 55% 

0.01895 
82. 99% 

0.02100 
83. 33% 

0.02362 
83,14% 

0.02587 
83. 15% 

0.02737 
83. 50% 

0.02973 
83. 34% 

AE(APSG 4>3) " 0.00914 0.01216 0.01567 0.01786 0.02021 0.02171 0. 02233 0.02335 

AE(ASPE 0.00808 
88. 80% 

0. 00874 
90. 73% 

0.01032 
90. 73% 

0.01103 
91. 24% 

0.01224 
91.27% 

0. 01299 
91.54% 

0.01288 
92.24% 

0.01359 
92. 39% 

AE(APSG 4>4) 0.00737 0.00966 0.01280 0.01465 0.01654 0.01776 0.01834 0.01919 

AE(ASPE 'il'4)'^ 0.00583 
91. 92% 

0.00552 
94. 15% 

0.00664 
94. 04% 

0.C0696 
94.48% 

0.00770 
,94.51% 

0. 00805 
94. 76% 

0.00785 
95.27% 

0.00834 
95.33% 

AE(SP) ® 0.00594 0.00808 0.01100 0.01280 0.01449 0.01566 0.01623 0.01705 

AE(ASPE)^ 0.00440 
93. 90% 

0.00394 
95. 82% 

0.00484 
95.66% 

0.00511 
95.94% 

0.00565 
95. 97% 

0.00595 
96.12% 

0.00574 
96. 54% 

0.00620 
96. 53% 

E(exact) -7.50040 -14.66731 -24.34896 -36.53446 -51.22244 -68.41121 -88.09990 -110.28946 

Results of other calculations 

AE(Wat8on)8 0.00991 
89. 49% • 

AE(Weis8)'' 0.00479 
93. 36% 

0.00641 
93.20% 

0.00764 
93.14% 

0.00825 
93.45% 

0.00963 
93.13% 

0. 01112 
92.76% 

AE (Kelly)' 0. 00336 
96. 44% 

^ AE( ' ••) = £(••.)-E(exact). For every ASPE the per cent correlation energy recovered 
100{[E(HF).E(ASPE »i)]/AE(HF)) is listed. 

^E(HF) = Hartree-Fock energy calculated by C. C, J. Roothaan, L. M. Sachs and A. W. Weisa, 
Rev. Mod. Phya, 2^, 186 (1960). Correlation energy • -AE(HF), 

^E(APSG 4>^) s energy calculated from antisymmetrized product of separated geminals 

^E(ASPE 3 energy calculated from augmented separated pair expansion 

^E(SP) s energy of separated pair approximation extrapolated from APSG by including the 
, K-geminal correction. 

^ E(ASPE) 5 energy of augmented separated pair expansion extrapolated from ASPE ^4 by adding the 
weighted K-geminal correction Cf^ {E(SP)-E(APSG $4) ). 

^E(Watson) B configuration interaction energy calculated by R. E. Watson, Phys. Rev*. 119, 170 (1960). 

^E(Weiss) a energy calculated by A, W. Weiss, Phys, Rev. 122, 1826 (1961). 

^ E(Kelly) n energy calculated by H. P. Kelly, Phya, Rev, 131, 684 (1963), obtained by the application 
of the Brucckner-Goldstone perturbation theory. 

Figure 28. Energies of various augmented separated pair expansions for 
beryllium-like atoms 
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Coefficients of augmented separated pair configurations in the augmented separated pair expansion 
for beryllium-like atoms 

No. AS PC Li' Be C+^ 0+4 F+5 Ne+6 

0 APSG $2 0. 99995 0. 99992 0. 99992 0. 99993 0. 99994 0. 99995 0. 99996 0. 99996 
1 (L2s, L2s K2p, L2p; 0) 0. 00496 0. 00720 0. 00720 0. 00680 0. 00640 0. 00576 0. 00536 0. 00480 
2 {K2s,K2s Kl3,L2s; 0) -0. 00400 -0. 00520 -0. 00520 -0. 00520 -0. 00480 -0. 00440 -0. 00408 -0. 00360 
3 (Kls, L2s K2p.L2p; 1) -0. 00440 -0. 00640 -0. 00640 -0. 00600 -0. 00552 -0. 00480 -0. 00456 -0. 00400 
6 (Kls, L2s K2p, K2p; 0) 0. 00320 0. 00400 0. 00400 0. 00400 0. 00360 0. 00336 0. 00304 0, 00280 
8 (Kls, L2s K2p, L2p; 0) -0. 00200 -0. 00200 -0. 00160 -0. 00120 -0. 00080 -0. 00040 -0. 00040 0. 00000 
9 (K2s,L2s L2p, L2p; 0) -0. 00240 -0. 00240 -0. 00200 -0. 00192 -0. 00160 -0. 00160 -0. 00120 -0. 00120 

10 (Kls, L2s L2p, L2p; 0) 0. 00368 0. 00360 0. 00280 0. 00240 0. 00200 0. 00160 0. 00104 0. 00120 
12 (Kls, Kls K2s,K2s; 0) -0. 00056 -0. 00120 -0. 00160 -0. 00200 -0. 00200 -0. 00192 -0. 00184 -0. 00200 
15 (K1S,K23 K2p, L2p; 0) 0, 00096 0. 00120 0. 00120 0. 00120 0. 00112 0. 00096 0. 00096 0. 00080 
22 (L2s, L2s L2p, L2p; 0) 0. 00016 0. 00080 0. 00120 0. 00160 0. 00160 0. 00176 0. 00176 0. 00160 
26 (Kls, Kls K2p, L2p; 0) 0. 00104 0. 00120 0, 00120 0, 00080 0. 00080 0. 00064 0. 00056 0. 00080 

Figure 29. Coefficients of augmented separated pair configurations in the augmented separated pair 
expansion for beryllium-like atoms 
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Coefficients of augmented separated pair configurations in the augmented separated pair expansion ^3 
for beryllium-like atoms 

No. • ASPC Li' Be B+ N^3 0+4 F+5 j^e+6 

0 APSG 0. 99993 0. 99988 0. 99989 0-. 99991 0. 99993 0. 99994 0. 99995 0. 99995 
1 {L2s. L2s K2p, L2p 0) 0. 00520 0. 00760 0. 00760 0. 00720 0. 00672 0. 00640 0. 00584 0. 00520 
2 (K2s, K2s Kls,L2s 0) -0. 00584 -0, 00720 -0. 00680 -0. 00624 -0. 00560 -0. 00496 -0. 00448 -0. 00400 
3 (Kls. Li2s K2p, L2p 1) -0. 00488 -0, 00720 -0. 00720 -0. 00680 -0. 00600 -0. 00560 -0. 00520 -0. 00480 
5 (Kls, L2s K2p, K3p 0) -0. 00128 -0. 00176 -0. 00176 -0. 00144 -0. 00120 -0. 00104 -0. 00104 -0. 00080 
6 (Kls, Li2s K2p, K2p 0) 0. 00224 0. 00280 0. 00280 0. 00280 0. 00280 0. 00256 0. 00240 0. 00240 
7 (Kls, L2s K2p.K3p 1) -0. 00096 -0. 00144 -0. 00144 -0. 00136 -0. 00120 -0. 00104 -0. 00096 -0. 00080 
8 (Kls, L2s K2p, L2p 0) -0. 00280 -0. 00400 -0. 00322 -0. 00280 -0. 00200 -0. 00152 -0. 00128 -0. 00120 
9 (K2s. L2s L.2p, L2p 0) -0. 00312 -0.00280 -0. 00240 -0. 00200 -0. 00160 -0. 00144 -0. 00136 -0. 00120 

10 (Kls, Li2s L2p, L2p 0) 0. 00432 0. 00400 0. 00320 0. 00240 0. 00200 0. OO16O 0. 00120 0. 00120 
12 (Kls, Kls K2s,K2s 0) -0. 00112 -0, 00200 -0. 00240 -0. 00240 -0. 00224 -0. 00216 -0. 00208 -0. 00200 
14 (Kls, Li2s L2p, K3p 0) -0. 00088 -0. 00160 -0. 00160 -0. 00144 -0. 00120 -0. 00096 -0. 00088 -0. 00080 
15 (Kls, K2s K2p, L2p 0) 0. 00128 0. 00160 0. 00160 0. 00120 0. 00120 0. 00104 0. 00096 0. 00080 
16 ' (Kls, L2s K3s,K3s 0) -0. 00048 -0. 00056 . -0. 00056 -0, 00064 -0. 00064 -0. 00064 -0. 00056 -0. 00040 
19 (Kls, L2s K2s,K3s 0) -0. 00032 -0. 00040 -0. 00040 -0. 00056 -0. 00048 -0. 00040 -0. 00032 -0. 00040 
22 (L23, L>2s L2p, Li2p 0) 0. 00008 0. 00080 0. 00160 0. 00160 0. 00160 0. 00184 0. 00160 0. 00160 
23 (Kls, Li2s K3p,K3p 0) 0. 00048 0. 00064 0, 00064 0. 00064 0. 00064 0. 00056 0. 00048 0. 00040 
26 (Kls, Kls K2p, L2p 0) 0. 00120 0. 00120 0. 00120 0. 00080 0. 00080 0. 00064 0. 00066 0. 00080 
27 (Kls, Li2s K3d, K3d 0) -0. 00056 -0. 00064 -0. 00064 -0, 00064 -0. 00056 -0. 00056 -0. 00053 -0. 00040 

Figure 30. Coefficients of augmented separated pair configurations in the augmented separated pair 
expansion for beryllium-like atoms 
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Coefficients of augmented separated pair configurations in the augmented separated pair expansion 
for beryllium-like atoms 

No. ASPC Li" Be B+ N^^ 0+4 p+5 j^g+6 

0 APSG 0. 99974 0. 99984 0. 99987 0. 99989 0. 99991 0. 99993 0. 99994 0. 99994 
1 (L2S, L2s K2p, Li2p; 0) 0. 00520 0. 00760 0. 00760 0. 00728 0. 00680 0. 00632 0, 00576 0. 00520 
2 (K2s, K2s Kls, L2s; 0) -0. 00592 -0. 00680 -0. 00648 -0. 00608 -0. 00528 -0. 00488 -0. 00440 -0. 00400 
3 (Kls, L2s K2p, L2p; 1) -0. 00496 -0. 00680 -0. 00720 -0. 00680 -0. 00600 -0. 00560 -0. 00520 -0. 00440 
4 (Kls. L2s L3p,K2p; 1) -0. 00608 -0. 00600 -0. 00480 -0. 00400 -0. 00360 -0. 00280 -0. 00248 -0. 00200 
5 (Kls. L2s KZp.KSp; 0) -0. 00181 -0. 00240 -0. 00216 -0. 00192 -0. 00160 -0. 00136 -0. 00120 -0. 00104 
6 (Kls. L2s K2p,K2p; 0) 0. 00176 0. 00240 0. 00280 0. 00240 0. 00240 0. 00248 0. 00240 0. 00200 
7 (Kls. L2s K2p.K3p; 1) -0. 00184 -0. 00256 -0. 00264 -0. 00240 -0. 00208 -0. 00184 -0. 00168 -0. 00160 
8 (Kls, L2s K2p, L2p; 0) -0. 00320 -0. 00400 -0. 00320 -0. 00280 -0. 00200 -0. 00160 -0. 00136 -0. 00080 
9 (K2s. L2s L2p, L2p; 0) -0. 00280 -0. 00240 -0. 00240 -0. 00200 -0. 00168 -0. 00160 -0. 00136 -0. 00120 

10 (Kls. L2s L2p, L2p; 0) 0. 00440 0. 00440 0. 00320 0. 00240 0. 00240 0. 00160 0. 00144 0. 00160 
11 (Kls. L2s L3p. K2p; 0) 0. 00280 0. 00256 0. 00200 0. 00160 0. 00128 0. 00112 0. 00096 0. 00080 
12 (Kls. Kls K2s,K2s; 0) -0. 00104 -0. 00200 -0. 00240 -0. 00248 -0. 00240 -0. 00232 -0. 00208 -0. 00216 
13 (Kls. L2s K3d.K4d; 0) 0. 00040 0. 00080 0. 00080 0. 00080 0. 00080 0. 00080 0. 00064 0. 00080 
14 (Kls. L2s L2p,K3p; 0) -0. 00120 -0. 00200 -0. 00160 -0. 00160 -0. 00120 -0. 00104 -0. 00104 -0. 00080 
15 (Kls. K2s K2p, L2p; 0) 0. 00128 0. 00160 0. 00160 0. 00128 0. 00120 0. 00112 0. 00096 0. 00080 
16 (Kls. L2s K3s.K3s; 0) -0. 00048 -0. 00080 -0. 00064 -0. 00072 -0. 00064 -0. 00064 -0. 00048 -0. 00040 
17 (Kls. L2s L3p,K3p; 1) -0. 00192 -0. 00200 -0. 00160 -0. 00128 -0. 00112 -0. 00088 -0. 00080 -0. 00064 
18 (Kls. L2s K3p, K4p; 0) -0. 00024 -0. 00040 -0. 00040 -0. 00040 -0. 00032 -0. 00032 -0. 00032 -0. 00024 
19 (Kls. L2s K2s.K3s; 0) -0, 00048 -0. 00048 -0. 00016 -0. 00008 0. 00000 0. 00000 0. 00000 0. 00000 
20 (Kls. L2s K2p, K4p; 1) -5. 00072 -0. 00096 -0, 00120 -0, 00120 -0. 00104 -0 00096 -0 00080 -0. 00080 
21 (Kls. L2s K3d, L3d; 1) -0. 00056 -0. 00080 -0. 00080 -0. 00080 -0 00080 -0 00064 -0 00064 -0 00040 
22 (L2S, L2s L2p, L2p; 0) 0. 00016 0 00120 0 00160 0 00160 0 00168 0 00168 0 00160 0 00160 
23 (Kls. L2s K3p. K3p; 0) 0 00024 0 00024 0 00040 0 00040 0 00032 0 00032 0 00032 0 00040 
24 (Kls, L2s K3d,K4d; 1) 0 00016 0 00040 0 00040 0 00040 0 00040 0 000321 0 ,00032 0 00040 
25 (Kls, L2s K3d, L3d; 0) 0 00040 0 00080 0 00080 0 00080 0 00080 0 ,00080 0 00064 0 ,00080 
26 (Kls. Kls K2p, L2p; 0) 0 00120 0 00120 0 00160 0 00120 0 .00120 0 ,00080 0 .00088 0 00040 
27 (Kls, L2s K3d,K3d; 0) -0 .00032 -0 .00024 0 .00000 -0 ,00008 -0 ,00008 0 ,00000 -0 00008 0 .00000 
28 (Kls, L2s L3d,K4d; 0) 0 00016 0 00040 0 ,00040 0 00040 0 00040 0 .00040 0 00040 0 00040 

-1 

Figure 31. Coefficients of augmented separated pair configurations in the augmented separated pair 
expansion for beryllium-like atoms 
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Energy analysis of augmented separated pair expansion for beryllium-like atoms 

No. Contribution^ Li" Be B+ . F+® Ne"""^ 

0 E(APSG *2) -7. 48419 -14.64809 -24.32561 -36. 50775 -51. 19208 -68. 37788 -88.06437 -110. 25118 
1 AE(L2s, L2S; K2p, L2p; 0) -0. 00022 -0. 00086 -0.00144 -0. 00192 -0. 00234 -0. 00258 -0.00287 -0. 00297 
2 AE(K2s.K2s; Kls,L2s; 0) -0. 00024 -0. 00072 -0.00107 -0. 00139 -0. 00157 -0. 00168 -0.00179 -0. 00178 
3 AE(Kls, L2s; K2p, L2p; 1) -0. 00013 -0. 00051 -0.00084 -0. 00110 -0. 00130 -0. 00138 -0.00156 -0. 00158 
6 AE(K1s, L2s; K2p, K2p; 0) -0. 00012 -0. 00036 -0.00058 -0. 00081 -0. 00094 -0. 00111 -0.00118 -0. 00127 
8 AE(Kl3, L2s; K2p, L2p; 0) -0, 00003 -0. 00006 -0.00006 -0, 00005 -0. 00004 -0. 00002 -0.00002 0. 00000 
9 AE{K2s, L2s; L2p, L2p; 0) -0. 00005 -0. 00010 -0.00012 -0. 00015 -0. 00015 -0. 00017 -0.00015 -0. 00016 
10 AE(K13, L2s; L2p, L2p; 0) -0. 00003 -0. 00006 -0.00006 -0. 00006 -0. 00006 -0. 00005 -0.00003 -0. 00004 
12 AE(Kls,Kls; K2s, K2s; 0) 0. 00000 -0. 00003 -0.0000" -0. 00016 -0. 00021 -0. 00025 -0.00029 -0. 00036 

15 AE(Kls,K2s; K2p, L2p: 0) -0. 00001 -0. 00003 -0.00005 -0. 00007 -0. 00008 -0. 00008 -0.00010 -0. 00009 
22 AE(L2s, L2S; L2p, L2p; 0) 0. 00000 -0. 00001 -0.00002 -0. 00006 -0. 00008 -0. 00012 -0.00016 -0. 00018 
26 AE(Kls,Kls; K2p, L2p; 0) -0, 00001 -0. 00001 -0.00002 -0. 00001 -0; 00002 -0. 00001 -0.00001 -0. 00002 

AE(ASPC)^ -0.00084 -0. 00275 -0.00434 -0. 00578 -0. 00679 -0. 00745 -0.00816 -0.00845 
E(ASPE ̂ 2)-E(APSG $2) -0. 00084 -0. 00277 -0.00440 -0. 00571 -0. 00674 -0. 00746 -0.OO8I6 -0. 00855 
E(ASPE ̂ 2) -7. 48503 -14. 65086 -24.33001 -36.51346 -51. 19882 -68.38534 -88.07253 -110. 25973 

^ The symbol AE(/ii,' Vy, fl'V, l/'j'; Of) denotes the contribution eg of the indicated ASPC to the energy lowering beyond 
the separated pair approximation E(APSG $2). 

''AE(ASPC) is the sum over all energy contributions cqc^Hq^. The slight difference between AE(ASPC) and 
{E(ASPE ^2)-E(APSG $2)] is discussed in the text. 

Figure 32. Energy analysis of augmented separated pair expansion for beryllium-like atoms 
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Energy analysis of augmented separated pair expansion ̂ 3 for beryllium-like atoms 

No. Contribution^ Li" Be B+ 0+"* Ne+^ 

0 EfAPSG -7.49126 -14,65515 -24.33329 -36.51660 -51. 20223 -68.38950 -88, 07757 -110.26611 
1 AE(L2S L2s K2p. L2p; 0) -0. 00022 -0. 00090 -0. 00149 -0.00200 -0. 00242 -0. 00283 -0, 00306 -0, 00317 
2 AE(K2s K2s Kls, L2s; 0) -0. 00030 -0. 00087 -0. 00124 -0.00150 -0. 00168 -0. 00180 -0, 00187 -0. 00195 
3 AE(Kls L2s K2p, L2p; 1) -0. 00015 -0. 00059 -0, 00096 -0.00126 -0. 00143 -0. 00162 -0. 00178 -0. 00189 
5 AE(Kls L2s K2p, K3p: 0) -0. 00007 -0. 00023 -0. 00034 -0.00038 -0. 00039 -0. 00040 -0. 00047 -0. 00041 
6 AE(K1S L2s K2p, K2p; 0) -0. 00007 -0. 00021 -0. 00034 -0.00048 -0. 00063 -0. 00070 -0. 00078 -0. 00093 
7 AE(Kls L2s K2p, K3p; 1) -0. 00002 -0. 00010 -0. 00015 -0.00019 -0. 00021 -0. 00021 -0. 00023 -0. 00021 
8 AE(Kls L2s K2p, L2p; 0) -0. 00004 -0. 00013 -0. 00014 -0.00013 -0. 00010 -0. 00007 -0. 00006 -0. 00005 
9 AE(K23 L2s L2p, L2p; 0) -0. 00007 -0. 00012 -0. 00014 -0.00014 -0. 00014 -0. 00015 -0. 00016 -0. 00016 
10 AE(Kls L2s LZp, L2p; 0) -0. 00004 -0. 00007 -0. 00007 -0.00006 -0. 00006 -0. 00005 -0. 00004 -0. 00004 
12 AE(K1S Kls K2s.K2s; 0) -0. 00001 -0. 00006 -0. 00012 -0.00018 -0. 00023 -0. 00027 -0. 00031 -0. 00035 
14 AE(Kl3 L2s L2p, K3p; 0) -0. 00001 -0. 00004 -0. 00007 -0,00009 -0. 00010 -0: 00010 -0. 00011 -0. 00011 

15 AE(Kl3 K2s K2p, L2p: 0) -0. 00002 -0. 00005 -0. 00007 -0.00007 -0. 00008 -0. 00009 -0. 00009 -0. 00009 
16 AE(Kls L23; K3s, K33; 0) -0. 00001 -0. 00004 -0. 00006 -0,00008 -0. 00011 -0. 00012 -0. 00012 -0, 00009 
19 AE(Kls L23 K23,K3S; 0) 0. 00001 0. 00003 0. 00005 0.00009 0. 00010 0. 00010 0. 00009 0. 00013 
22 AE(L23 L2s; L2p, L2p; 0) 0. 00000 -0. 00002 -0. 00003 -0.00005 -0. 00008 -0. 00012 -0. 00014 -0. 00017 
23 AE(Kls L2s; K3p, K3p; 0) -0. 00002 -0. 00005 -0. 00007 -0.00010 -0. 00014 -0. 00014 -0. 00014 -0. 00013 
26 AE(Kls Kls; K2p, L2p; 0) -0. 00001 -0. 00001 -0. 00002 -0.00001 -0. 00002 -0. 00001 -0. 00001 -0, 00001 
27 AE(Kl3 L2s; K3d, K3d; 0) -0. 00001 -0. 00002 -0. 00004 -0,00005 -0. 00005 -0. 00006 -0. 00006 -0, 00005 

AE(ASPC)^ -Ô. 00106 -0. 00348 -0. 00530 -0.00668 -0. 00777 -0. 00864 -0. 00934 -0. 00968 
E(ASPE ̂ 3)-E{APSG $3) -0. 00106 -0. 00342 -0. 00535 -0,00683 -0; 00797 -0. 00872 -0. 00945 -0. 00976 
E(ASPE ̂ 3) -7. 49232 -14.65857 -24.33864 -36.52343 -51. 21020 -68, 39822 -88.08702 -110. 27587 

*The symbol Vy, fi'i', f'j'; a) denotes the contribution COCqHqq of the indicated ASPC to the energy lowering beyond 
the separated pair approximation E(APSG $3). , 

^AE{ASPC) is die sum over all energy contributions CQC^HOQ. The slight difference between AE(ASPC) and 
{E(ASPE ^3) -E(APSG $3) ] is discussed in the text. 

Figure 33. Energy analysis of augmented separated pair expansion for beryllium-like atoms 
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Energy analysis of augmented separated pair expansion for beryllium-like atoms 

No. Contribution^. Li Be 

0 E(APSG $4) -7. 49303 -14.65765 -24. 33616 -36. 51981 -51. 20590 -68.39345 -88. 08156 -110. 27027 
1 AE(L2s, L2s K2p, I_,2p; 0) -0. 00022 -0. 00089 -0. 00149 -0. 00202 -0. 00244 -0. 00280 -0. 00303 -0. 00317 
2 AE(K2s.K2s Kls, L2s; 0) -0. 00031 -0. 00083 -0. 00118 -0. 00146 -0. 00157 -0. 00175 -0. 00183 -0. 00191 
3 AE(Kls. L2s K2p, L2p; 1) -0. 00015 -0. 00056 -0, 00096 • -0, 00126 -0. 00144 -0. 00163 -0. 00179 -0. 00175 
4 AE(Kls. L2s L3p, K2p: 1) -0. 00017 -0. 00032 -0, 00034 -0. 00034 -0. 00038 -0. 00033 -0. 00033 -0. 00030 
5 AE(K1S,L23 K2p, K3p; 0) -0. 00010 -0. 00030 -0. 00041 -0. 00049 -0. 00051 -0. 00051 -0. 00053 -0. 00052 
6 AE(K1S, L2S K2p.K2p; 0) -0. 00006 -0. 00019 -0. 00035 -0. 00042 -0. 00054 -0. 00070 -0. 00080 -0. 00078 
7 AE{K1s, L23 K2p,K3p; 1) -0. 00005 -0. 00018 -0. 00028 -0. 00034 -0. 00036 -0. 00038 -0. 00040 -0. 00043 
8 AE{K1S.L2S K2p, L2p; 0) -0. 00005 -0. 00013 -0. 00014 -0. 00014 -0. 00011 -0. 00008 -0. 00007 -0, 00004 
9 AE(K2S, L2s LZp, L2p: 0) -0. 00006 -0. 00010 -0. 00014 -0. 00014 -0. 00014 -0. 00016 -0. 00016 -0. 00016 
10 AE(K1S,L23 L2p, L2p: 0) -0. 00004 -0. 00009 -0. 00008 -0. 00007 -0. 00008 -0. 00005 -0. 00005 -0. 00006 
11 AE(Kl3.L2s L3p. K2p: 0) -0. 00005 -0. 00008 -0. 00008 -0. 00007 -0. 00008 -0. 00007 -0. 00007 -0. 00006 
12 AE)Kls.Kls K2s.K2s: 0) -0. 00001 -0. 00006 -0. 00012 . -0. 00018 -0. 00023 -0. 00028 -0, 00030 -0. 00037 
13 AE(Kls.L2s K3d,K4d; 0) -0. 00001 -0. 00006 -0. 00009 -0. 00012 -0. 00016 -0. 00019 -0. 00018 -0. 00025 
14 AE(Kl3,L23 L2p, K3p: 0) -0. 00001 -0. 00006 -0. 00008 -0. 00011 -0; 00010 -0. 00011 -0, 00013 -0. 00012 

15 AE(Kl3,K2s; K2p, L2p: 0) -0. 00002 -0. 00004 -0. 00007 -0. 00007 -0. 00008 -0. 00010 -0. 00010 -0. 00009 
16 AE(Kl3.L23: K33.K33; 0) -0. 00001 -0. 00004 -0. 00006 -0. 00008 -0. 00010 -0. 00011 -0. 00010 -0. 00009 
17 AE(Kl3,L2s; L3p, K3p; 1) -0. 00002 -0. 00004 -0. 00004 -0. 00004 -0. 00005 -0. 00004 -0. 00004 -0. 00004 
18 AE(Kl3,L2s K3p. K4p; 0) -0. 00001 -0. 00003 -0. 00004 -0. 00005 -0. 00006 -0. 00007 -0. 00008 -0. 00007 
19 AE(Kls.L2s K23.K3s; 0) 0. 00002 0. 00003 0. 00002 0. 00001 0. 00000 0. 00000 0. 00000 0. 00000 
20 AE(Kls, L2s K2p, K4p: 1) -0. 00001 -0. 00002 -0. 00005 -0. 00006 -0. 00007 -0. 00008 -0. 00007 -0. 00008 
21 /&E(KIs, L23 K3d, L3d; 1) 0. 00000 -0. 00002 -0. 00003 -0. 00003 -0. 00005 -0. 00005 -0. 00005 -0. 00004 
22 AE(L23,L2S L2p, L2p; 0) 0. 00000 -0. 00001 -0. 00003 -0. 00006 -0. 00009 -0. 00012 -0. 00014 -0. 00018 
23 AE(Kl3, L2s: K3p, K3p: 0) -0. 00001 -0. 00001 -0. 00004 -0. 00006 -0. 00006 -0. 00007 rO. 00008 -0. 00012 
24 AE(Kl3.L23 K3d. K4d: 1) 0. 00000 -0. 00001 -0. 00002 -0. 00002 -0. 00003 -0. 00003 -0. 00004 -0. 00006 
25 AE(Kl3.L2s K3d, L3d; 0) 0, 00000 -0. 00001 -0. 00002 -0. 00002 -0. 00003 -0. 00004 -0. 00003 -0. 00005 
26 AE(Kl3.Kl3 K2p, L2p: 0) -0. 00001 -0. 00001 -0. 00003 -0. 00003 -0. 00003 -0. 00002 -0. 00003 -0. 00001 
27 AE(Kl3,L23 K3d, K3d; 0) 0. 00000 -0. 00001 0. 00000 -0. 00001 -0. 00001 0. 00000 -0, 00001 0. 00000 
28 AE(Kl3,L2s ; L3d. K4d; 0) 0. 00000 0. 00000 -0. 00001 -0. 00001 -0 00001 -0. 00002 -0 00002 -0 00002 

AE(ASPC)^ -0, 00136 -0, 00407 -0, OO616 -0 00769 -0 00881 -0. 00979 -0 01046 -0 01077 
E(ASPE ̂ 4)-E(APSG $4) -0. 00154 -0 00414 -0 OO616 -0 00769 -0 00884 -0 00971 -0 01049 -0 01085 
E{ASPE »4) -7.49457 -14 66179 -24 34232 -36 52750 -51 21474 -68 40316 -88 09205 -110 28112 

^The symbol AE(/ii, vj; fl'i', f'j'; cc) denotes the contribution cqCqHou of the Indicated ASPC to the energy lowering beyond 
the separated pair approximation E(APSG $4). 

^AE(ASPC) is the sum over all energy contributions cncnHnn. The slight difference between AE(ASPC) and 
IE(ASPE 'i'4)-E(APSG $4)) is discussed in the text. 

Figure 34. Energy analysis of augmented separated pair expansion for beryllium-like atoms 



www.manaraa.com

Comparative analysis of energy lowering of ASPE's and comparison with perturbation theory 

Energy^ 
Number 

of 
ASPC's 

Li" Be B+ C+Z N+3 0+4 F+5 Ne+6 

Augmented separated pair expansion #2 

11 -0.00084 -0.00275 -0,00434 -0.00578 -0.00679 -0.00745 -0.00816 -0.00845 

a€T{P) -0.00085 -0.00279 -0.00443 -0.00570 -0.00670 -0.00744 -0.00814 -0,00862 

Augmented separated pair expansion 
-

^^2 11 -0.00093 -0.00303 -0.00462 -0.00588 -0.00687 -0.00771 -0.00830 -0.00881 

acj 7 -0.00013 -0.00045 -0.00068 -0.00080 -0.00090 -0.00093 -0.00104 -0.00087 

ac<p 18 -0.00106 -0.00348 -0.00530 -0.00668 -0,00777 -0.00864 -0,00934 -0.00968 

aÇT(p) -0.00115 -0.00371 -0.00579 -0.00738 -0.00854 -0.00952 -0.01031 -0.01076 

Augmented separated pair expansion 

â 2 11 -0.00093 -0.00291 -0.00459 -0.00585 -0.00675 -0.00769 -0.00830 -0,00852 

AC3 7 -0.0Ô016 -0,00057 -0.00085 -0.00108 -0,00114 -0.00118 -0.00125 -0.00128 

AÇ4 10 -0,00027 -0.00059 -0.00072 -0.00076 -0.00092 -0.00092 -6.00091 -0.00097 

ACf 28 -0.00136 -0,00407 -0.00616 -0.00769 -0,00881 -0.00979 -0.01046 -0.01077 

acx(p) -0.00149 -0.00437 -0.00646 -0,00847 -0.00984 -0.01043 -0,01178 -0.01253 

^ ACj denotes the contribution to the energy lowering beyond the separated pair approximation resulting 
from those ASPC's which occur in but not in ACf = SAçj is the total energy lowering beyond the 
separated pair approximation. Aci>(P) is the total energy lowering calculated from second order 
perturbation theory. 

Figure 35. Comparative analysis of energy lowering of ASPE's and comparison with perturbation theory 
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Comparison between variational calculation and perturbation 
calculation for beryllium for augmented separated pair expansion ^3 

No. ^On 
a «On «no b 

6(AE^) (n) ^00 "^nn 

a 

^00 "^nn 

b 
6(AE^) 

1 0.00756 0.00004 -0.00089 -0.00001 

2 -0.00686 -0.00034 -0.00082 -0.00005 

3 -0.00723 0.00003 -0.00059 0.00000 

5 -0.00276 0.00100 -0.00035 0.00012 

6 0.00406 -0.00126 -0.00031 0.00010 

7 -0. 00146 0.00002 -0.00010 0. 00000 

8 -0.00295 -0.00105 -0.00009 -0.00004 

9 -0.00268 -0.00012 -0.00011 -0.00001 

10 0.00392 0.00008 -0.00007 0.00000 

12 -0.00185 -0.00015 -0.00005 -0.00001 

14 -0.00069 -0.00091, -0.00002 -0.00002 

15 0.00153 0.00007 -0.00005 0.00000 

16 -0.00058 0.00002 -0.00004 0.00000 

19 0.00113 -0.00153 -0.00009 0. 00012 

22 0.00074 0.00006. -0.00001 0.00000 

23 0.00103 -0.00039 -0.00008 0.00003 

26 0.00131 -0.00011 ' -0.00001 0.00000 

27 -0.00079 0.00015 -0.00003 0. 00000 

Total -0.00371 0.00023 

^This error is defined by c^ = Hf)„/[Hnn"Hy,Ti] + ôc^ where c^ is 
the coefficient of the n-th ASPC in ASPE ^3. 

^This error is defined by AEq = Hg^/ + 5(AE^) where 
AEjj is the energy lowering contribution cq Cn^On the n-th ASPC in 
ASPE #3. 

Figure 36. Comparison between variational calculation and perturbation 
calculation for beryllium for augmented separated pair 
expansion 
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CUMULATIVE K-GEMINAL ENERGY LOWERING 

(Is,2s) (Is,3s) (Is,4s) (ls,2p) (ls,3p) (ls,4p) (ls,3d) (ls,4d) (ls,4f) 

(i.j) REPRESENTS THE INTERACTIONS A^(Ki.Kj) 

CUMULATIVE L-GEMINAL ENERGY LOWERING 

A^(L2s) A^(L2s) 
•A^(L2p) 

«AE(L) 

iij 

(2s,3s) (2s,2p) (2s,3p) (2s,3d) (2p,2p) (2p,2s) (2p.3s) (2p,3p) (2p,3d) 

(l,J) REPRESENTS THE INTERACTIONS A^(LI,Lj) 

Graph 1, Analysis of intrageininal contributions to energy lowering in 
the separated pair approximation 
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Graph 2. Dependence upon nuclear charge of intragemina1 and intergeminal 
contributions to energy lowering in the separated pair approxima­
tion 



www.manaraa.com

ENERGY CHANGES'(a.u.) 

^ _ 

c 
o 
f-
m ̂  
> m 
3) 

o 
X 
> 
30 
o 
m 

00 

p 
m 
tt 

i 
o 

i 
o 

4̂  M O 
i I 1 1 I I 

i 
o 
b 
œ 
T i rn 

i 

1 
T 

i 
o 
o ro 

1—r 

p 
o 
o 

1—r 

o 
6 ro 

1—i—r 

o 
g 
T 1—r 

r.= 

o 

I I I I I I I I I I I I I I I I I I I I I 



www.manaraa.com

141 

1 I I I I I I I I I r 

ENERGY- LOWERING DUE TO 
L INTERGEMINAL CORRELATIONS 

3 
d 

o 
z 
cc 
w 

3 
o 
q: 
LLI 
z 
LJ 

0.000 -

-0.002 -

-0.004 

-0.006 

- 0.008 

-0.010 

-0.012 -

E(ASPE\%;)-E(APSG $;) 
S AEj (ASPC) 

1-2 

I «3 

i«4  

I I I I I I I I I I I I 
0.1 

I / Z  
I I I I I 

0.2 0.3 

00 10 8 6 

Graph 3. Energy lowering due to intergeminal correlations for the 
augmented separated pair expansion 
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